

Fakultät Mathematik und Naturwissenschaften Fachrichtung Mathematik

Existence of Feller processes Parametrix Construction

Feller processes behave locally like Lévy processes, but - in contrast to Lévy processes - they need not be homogeneous in time and space. The Lévy triplet (b, Q, v) is replaced by an x-dependent triplet (b(x), Q(x), v(x, dy)). Typical examples are solutions to

Lévy-driven SDEs, affine processes and stable-like processes. A (rich) Feller process can be characterized by its symbol

$$q(x,\xi) = -ib(x)\xi + \frac{1}{2}\xi Q(x)\xi + \int (1 - e^{iy\xi} + iy\xi \mathbb{1}_{|y|<1})v(x,dy), \qquad x \in \mathbb{R}^d, \xi \in \mathbb{R}^d.$$

Fundamental questions: When does a negative definite symbol $q(x, \cdot)$ give rise to a Feller process with symbol q? How to derive heat kernel estimates for the transition probability of the Feller process?

Example: NIG(-like) processes

Motivation

A one-dimensional Lévy process is Normal inverse Gaussian (NIG) if its characteristic exponent equals

 $\psi(\xi) = -ib\xi + \delta\sqrt{m^2 + (\xi - i\ell)^2 - \delta\sqrt{m^2 - \ell^2}}.$

Interesting for applications: state-space dependent parameters, i. e. b = b(x), $\delta = \delta(x)$, ... (\rightarrow NIG-like process) **Question:** Under which assumptions on $b(\cdot)$, $\delta(\cdot)$, $m(\cdot)$, $\ell(\cdot)$ does there exist a Feller process with symbol

Existence results for NIG-like processes

- So far: Existence results under very restrictive assumptions; require in particular **smoothness** of b, δ , m, ℓ $(\rightarrow \text{Barndorff-Nielsen \& Levendorskii})$
- Now: Existence of NIG-like processes for **Hölder continuous** mappings b, δ , m, ℓ .
- Easy to prove using general existence result. Provides further additional information such as heat kernel estimates and richness of the domain of the generator (see below).

$$q(x,\xi) := -ib(x)\xi + \delta(x)\sqrt{m(x)^2 + (\xi - i\ell(x))^2} - \delta(x)\sqrt{m(x)^2 - \ell(x)^2}$$

Existence result

Framework

 $q(x,\xi) = \psi_{\alpha(x)}(\xi)$

for a family $(\psi_{\alpha})_{\alpha \in I}$ of continuous negative definite functions and $I \subseteq \mathbb{R}^n$. Assumptions:

- $\psi_{\alpha}(\cdot)$ has a holomorphic extension to a certain domain $\Omega \subseteq \mathbb{C}$ for each $\alpha \in I$,
- $\partial_{\alpha_i}\psi_{\alpha}$ (exists and) extends holomorphically to Ω for all j
- ψ_{α} and $\partial_{\alpha_{i}}\psi_{\alpha}$ satisfy certain growth conditions.
- in dimension d > 1: rotational invariance of ψ_{α}

Parametrix construction

- ... gives existence of a Feller process $(X_t)_{t>0}$ with symbol $q(x, \xi) := \psi_{\alpha(x)}(\xi)$ for **Hölder continuous** mappings $\alpha : \mathbb{R}^d \to I$. Additional information:
- $C_{c}^{\infty}(\mathbb{R}^{d})$ is a core for the generator L,
- the $(L, C_c^{\infty}(\mathbb{R}^d))$ -martingale problem is well-posed
- transition density p is fundamental solution to the Cauchy problem $\partial_t - L = 0$
- heat kernel estimates for *p* and its time derivative
- in dimension d = 1: irreducibility with respect to Le-

besque measure, heat kernel estimate for $\partial_X p(t, x, y)$

Applications

- Feller processes with symbols of varying order
- existence and uniqueness results for solutions of Lévydriven SDEs
- variable order subordination, i.e. $q(x, \xi) = f_{\alpha(x)}(|\xi|^2)$ for a family $(f_{\alpha})_{\alpha \in I}$ of Bernstein functions (e.g. relativistic stable-like, normal tempered stable-like, ...)

Reference Kühn, F.: Probability and Heat Kernel Estimates for Lévy(-Type) Processes. PhD Thesis, 2016.

Technische Universität Dresden Fakultät Mathematik und Naturwissenschaften Fachrichtung Mathematik Institut für Mathematische Stochastik

Franziska Kühn franziska.kuehn1@tu-dresden.de http://www.math.tu-dresden.de/~fkuehn/

DRESDEN