Approximation of eigenfunctions of the fractional Laplacian

Grzegorz Zurek

Faculty of Pure Mathematics, Wrocław University of Science and Technology, Wrocław, Poland

Introduction

Method used for the estimation has been proposed by M. Kwaśnicki (2012). Main result obtained by Kwaśnicki provided to a construction of a matrix which eigenvectors could be considered as a discretization of original eigenfunctions. The method of construction the matrix V is given below. Let $D \subseteq \mathbb{R}^d$ be an open set in \mathbb{R}^d , and let $\varepsilon > 0$. Let K_{ε} be the set of those $k \in \mathbb{Z}^d$ for which $D \cap \prod_{j=1}^d [k_j \varepsilon, (k_j + 1)\varepsilon]$ is nonempty, and let

 $\kappa: \{1, 2, \dots, |K_{\varepsilon}|\} \to K_{\varepsilon}$ be the enumeration of elements of K_{ε} . Finally, let $\overline{v} = \sum_{k \in \mathbb{Z}^d} \|k\|^{-d-\alpha}$, where $\|k\| = \sqrt{\sum_{i=1}^d (|k_i| + 1)^2}$. Define a

 $|K_{\varepsilon}| \times |K_{\varepsilon}|$ matrix V with entries

$$V_{p,q} = -rac{c_{d,lpha}}{arepsilon^{lpha}} \|\kappa(p) - \kappa(q)\|^{-d-lpha},$$

where $p, q = 1, 2, \ldots, |K_{\varepsilon}|, p \neq q$;

$$V_{p,p} = -\frac{c_{d,\alpha}}{\varepsilon^{\alpha}} (\overline{v} - d^{-(d+\alpha)/2})$$

for $p = 1, 2, \ldots, |K_{\varepsilon}|$.

After few modification it has been used to obtain following results.

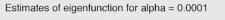
One-dimensional case

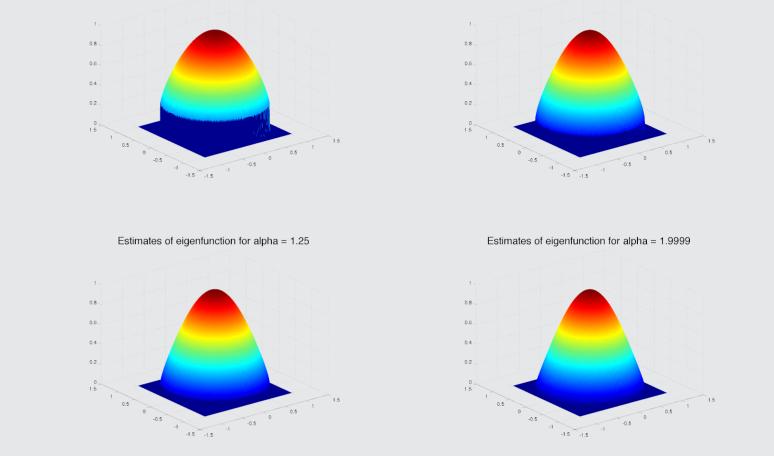
We divided an interval into 20001 parts so we have to consider matrices 20001×20001 .

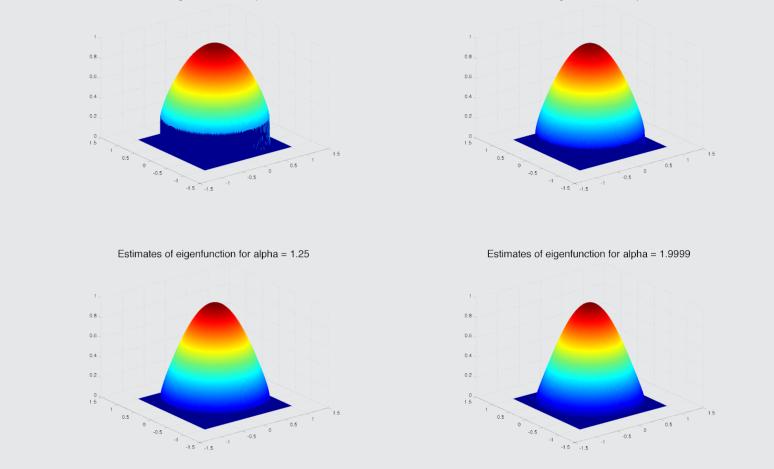
Two-dimensional case

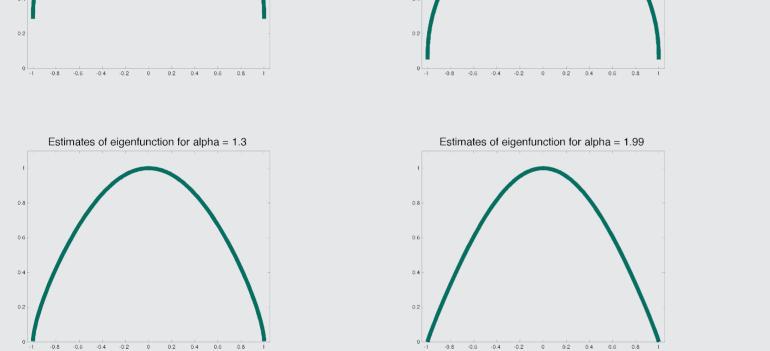
We divided a disc into small squares in the way the diameter of ball contains 224 squares. If finally gives us under consideration a matrix of size **39669** × **39669**.

Estimates of eigenfunction for alpha = 0.75



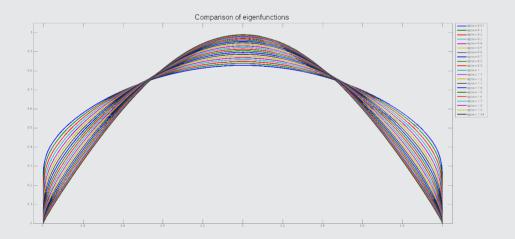






Convergence in one-dimensional case

Here we can see that the accuracy is not the only parameter affecting the convergence to a boundary limit but it directly depends also on lphaparameter.

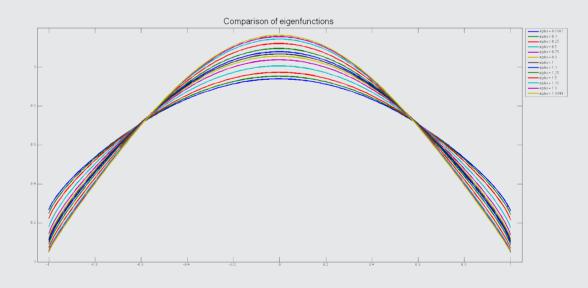


Second derivative in one-dimensional case

Here we can compare the second derivatives of our estimated eigfunction (for $\alpha = 1.99$) and proper eigenfunction for Laplacian Δ , equals $\cos(\frac{\pi}{2}x)$ whose second derivative is given by $-(\frac{\pi}{2})^2 \cos(\frac{\pi}{2}x) < 0$.

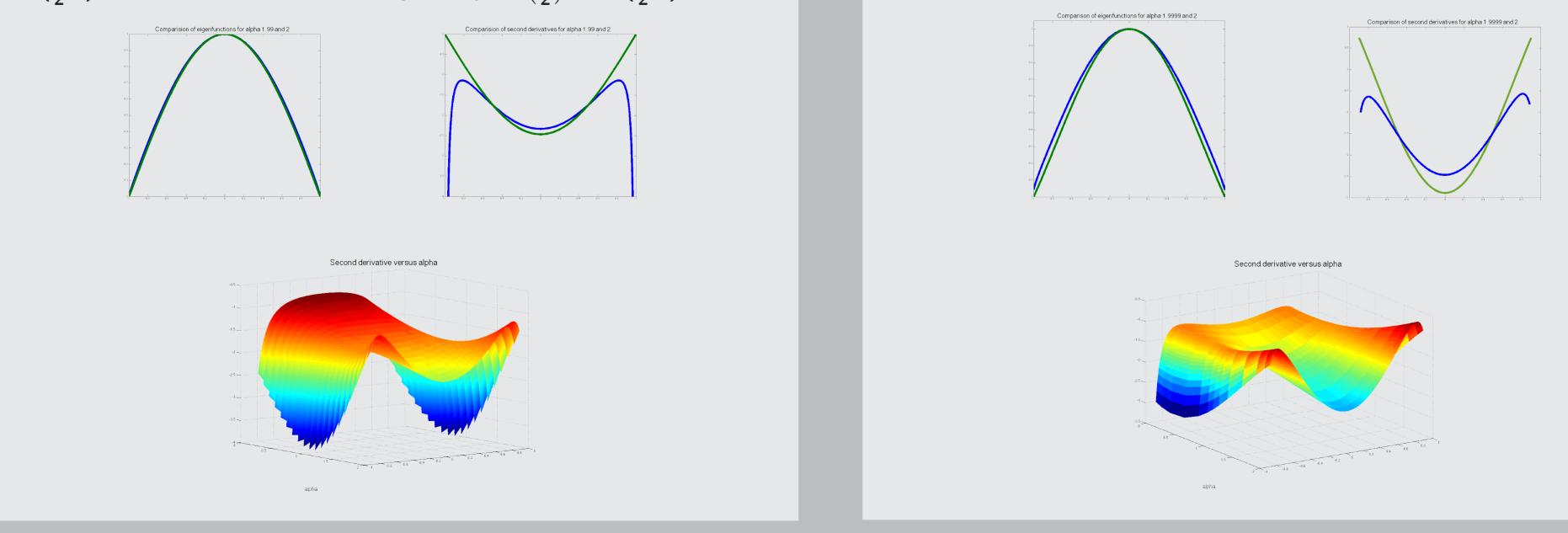
Convergence in two-dimensional case

In two-dimensional case due to fewer linear division the convergence to boundary if significantly worse than in in one-dimensional case.



Second derivative in two-dimensional case

It is well known that eigenfunctions of Δ are radially Bessel functions $J_n(k_{n,m}r)(\gamma \cos(n\theta) + \delta \sin(n\theta))$. Here we have estimates of eigenfunction for $\alpha = 1.9999$ and the exact eigenfunction for Δ .



Bibliography

- ▶ K. Bogdan, T. Byczkowski, T. Kulczycki, M. Ryznar, R. Song, Z. Vondraček, Potential Analysis of Stable Processes and its Extensions, Springer-Verlag, 2009.
- R. Courant, D. Hilbert, Methods of mathematical physics, Volume 1, Interscience publishers, INC., New York, 17 printing, 1966.
- ▶ M. Kwaśnicki, *Eigenvalues of the fractional Laplace operator in the interval*, Journal of Functional Analysis 262 (2012) 2379-2402.
- R. S. Laugesen, Spectral Theory of Partial Differential Equations, Lecture notes, University of Illinois at Urbana-Champaign, 2011.

http://wmat.pwr.edu.pl/

grzegorz.zurek@pwr.edu.pl