

Recurrent extensions of real self-similar Markov processes

Henry Pantí

UADY

henry.panti@correo.uady.mx

Abstract

In this paper we obtain necessary and sufficient conditions for the existence of recurrent extensions of real self-similar Markov processes. In doing so, we solve an old problem originally posed by Lamperti for positive self-similar Markov processes. We generalize Rivero's and Fitzsimmons results [3, 6, 7] to the real-valued case. Our main result ensures that a real self-similar Markov process with a finite hitting time of the point zero has a recurrent extension that leaves 0 continuously if and only if the MAP associated, via Lamperti transformation, satisfies the Cramér's condition. for some γ such that the right-hand side is defined. $M(\cdot, \gamma)$ is a unit-mean martingale with respect to \mathcal{G}_t under any initial distribution of $(\xi(0), J(0))$. Thus, we can define the change of measure

$$\frac{\mathbb{IP}^{(\gamma)}}{\mathrm{dP}}\Big|_{\mathcal{G}_t} = M(t,\gamma).$$

Under $\mathbb{P}^{(\gamma)}$, ξ is still a MAP with matrix exponent $F^{(\gamma)}$: $F^{(\gamma)}(z) = (\operatorname{diag}(v_i(\gamma))^{-1}[F(z+\gamma) - \kappa(\gamma)\operatorname{Id}]\operatorname{diag}(v_i(\gamma)).$

Given the MAP ξ with probabilities $\mathbb{P}_{z,i}$, the dual process of

Theorem 2. Let $\beta \in (0, \alpha)$. The following are equivalent: (*i*) $\kappa(\beta) < 0$.

(ii) $\mathbb{E}_i(I^{eta/lpha}) < \infty$, for i = -1, 1.

(iii) The process (X, T_0) admits an extension \tilde{X} , that is a selfsimilar recurrent Markov process, and leaves 0 by a jump and whose associated excursion measure \mathbf{n}^{β} is such that

 $\mathbf{n}^{\beta}(X_{0+} \in \mathrm{d}x) = b_{\alpha,\beta}^{[x]} |x|^{(\beta+1)} \mathrm{d}x$

Based on a joint work [5] with J.C. Pardo, CIMAT and Víctor Rivero, CIMAT.

1. Introduction

1.1 Real self-similar Markov processes

A real self-similar Markov process (rssMp for short) with self-similarity index $\alpha > 0$ is a standard Markov process $X = (X_t)_{t \ge 0}$ with probability laws $P = (P_x)_{x \in \mathbb{R}}$ which satisfies the following scaling property: for all c > 0,

$\{(cX_{tc^{-\alpha}})_{t\geq 0}, \mathcal{P}_x\} \stackrel{\mathsf{Law}}{=} \{(X_t)_{t\geq 0}, \mathcal{P}_{cx}\}, \quad \forall x \in \mathbb{R}.$

Let T_0 be the first hitting time of zero for X, i.e.,

 $T_0 = \inf\{t > 0 : X_t = 0\}.$

Assumption. The state 0 is recurrent, regular for itself and will be considered as a cemetery point.

A standard process \tilde{X} is called a *recurrent extension* of (X, P) if \tilde{X} behaves as (X, P) until T_0 and the state zero is a regular and recurrent state for (\tilde{X}, P) .

1.2 Markov additive processes

Let *E* be a finite state space and $(\mathcal{G}_t)_{t \ge 0}$ a standard filtration. A càdlàg process (ξ, J) in $\mathbb{R} \times E$ with law \mathbb{P} is called *Markov additive process* (MAP for short) with respect to $(\mathcal{G}_t)_{t \ge 0}$ if $(J(t))_{t \ge 0}$ is a continuous time Markov chain in *E*,

 ξ is a MAP with probabilities $\hat{\mathbb{P}}_{z,i}$ and with matrix exponent: $\hat{F}(z) = \operatorname{diag}(\psi_1(-z), \dots, \psi_N(-z)) + \hat{Q} \circ G(-z)^T$, where \hat{Q} has entries given by $\hat{q}_{i,j} = \pi_j q_{j,i}(\pi_i)^{-1}$, $i, j \in E$.

1.3 Lamperti transformation

Recently in [1] it is established that for any rssMp there is a MAP (ξ, J) in $\mathbb{R} \times \{-1, 1\}$ such that under P_x , $x \neq 0$, the process *X* can be represented as

 $X_t = \exp\left\{\xi(\tau(t))\right\} J(\tau(t)), \qquad t \ge 0,$

where

$$\tau(t) = \inf\left\{s \ge 0 : \int_0^s \exp\left\{\alpha\xi(u)\right\} \mathrm{d}u \ge t\right\},\$$

and $(\xi(0), J(0)) = (\log x, [x])$, with [x] the sign function.

1.4 Excursion measure

Let \mathbb{D} be the space of càdlàg paths defined on $[0, \infty)$ with values in \mathbb{R} , and endowed with the Skorohod topology. Let $(\mathcal{F}_t)_{t\geq 0}$ be the natural filtration generated by the canonical process X.

We say that a σ -finite measure on $(\mathbb{D}, \mathcal{F}_{\infty})$ having infinite mass is an excursion measure compatible with (X, P) if the following are satisfied:

 $1.\,\mathrm{n}$ is carried by

 $\{\omega \in \mathbb{D} : T_0(\omega) > 0, X_t(\omega) = 0, \forall t \ge T_0\};\$

2. for every bounded \mathcal{F}_{∞} -measurable H and each t > 0, $\Lambda \in \mathcal{F}_t$

where $b_{\alpha,\beta}^1, b_{\alpha,\beta}^{-1}$ satisfy

 $b_{\alpha,\beta}^{1}\mathbb{E}_{1}(I^{\beta/\alpha}) + b_{\alpha,\beta}^{-1}\mathbb{E}_{-1}(I^{\beta/\alpha}) = \frac{\beta}{\Gamma(1-\beta/\alpha)}.$

If one of these conditions hold then \mathbf{n}^{β} is self-similar with index $\gamma=\beta/\alpha.$

3. Examples

Example 1. Let (X, P) be an α -stable process, $\alpha \in (1, 2)$. The matrix exponent of ξ , the MAP associated with (X, P) via Lamperti transformation, is

$$F(z) = \begin{pmatrix} -\frac{\Gamma(\alpha-z)\Gamma(1+z)}{\Gamma(\alpha\hat{\rho}-z)\Gamma(1-\alpha\hat{\rho}+z)} & \frac{\Gamma(\alpha-z)\Gamma(1+z)}{\Gamma(\alpha\hat{\rho})\Gamma(1-\alpha\hat{\rho})} \\ \frac{\Gamma(\alpha-z)\Gamma(1+z)}{\Gamma(\alpha\rho)\Gamma(1-\alpha\rho)} & -\frac{\Gamma(\alpha-z)\Gamma(1+z)}{\Gamma(\alpha\rho-z)\Gamma(1-\alpha\rho+z)} \end{pmatrix},$$

for $\operatorname{Re}(z) \in (-1, \alpha)$. Here the Cramér number is $\theta = \alpha - 1$.

Example 2. Let (X, \mathbb{P}) be an α -stable process, $\alpha \in (0, 1)$. Let $((\xi, J), \mathbb{P})$ be the MAP associated to (X, \mathbb{P}) via the Lamperti transformation. It is well known that for $\alpha \in (0, 1)$, (X, \mathbb{P}) never reaches the point zero, then (ξ, J) drifts towards to $+\infty$ (see [2]). We consider the dual of ξ , $((\xi, J), \hat{\mathbb{P}})$,

and the following property is satisfied, for any $i \in E$, $s, t \ge 0$:

given $\{J(t) = i\}$, the pair $(\xi(t + s) - \xi(t), J(t + s))$ is independent of \mathcal{G}_t , and has the same distribution as $(\xi(s) - \xi(0), J(s))$ given $\{J(0) = i\}$.

We use the following notation:

 $\mathbb{P}_{z,i}(\cdot) = \mathbb{P}(\cdot|\xi(0) = z, J(0) = i), \quad z \in \mathbb{R}, i \in E.$

With the convention: $\mathbb{P}_i = \mathbb{P}_{0,i}$.

A characterization of a MAP is as follows: The pair (ξ, J) is a MAP if and only if, for each $i, j \in E$, there exist a sequence of iid Lévy processes $(\xi_i^n)_{n \ge 0}$, an a sequence of iid random variables $(U_{i,j}^n)_{n \ge 0}$ independent of the chain J, such that $\sigma_0 = 0$ and $(\sigma_n)_{n \ge 0}$ are the jump times of J, and the process ξ has the following representation:

 $\xi(t) = \mathbf{1}_{\{n>0\}}(\xi_{\sigma_n} - U^n_{J(\sigma_n)}) + \xi^n_{J(\sigma_n)}(t - \sigma_n),$

for $t \in [\sigma_n, \sigma_{n+1})$, $n \ge 0$.

Assumption. *J* is an irreducible Markov chain with equilibrium distribution π .

Let $Q = (q_{i,j})_{i,j\in E}$ be the rate matrix of the chain J. For each $i \in E$, let ψ_i be the Laplace exponent of the Lévy process ξ_i . Let G be the matrix with entries $G_{ij}(z) = \mathbb{E}[e^{zU_{ij}}]$ (with the convention that $U_{ij} = 0$ if $q_{ij} = 0$, $i \neq j$, and also set $U_{ii} = 0$ for each $i \in E$). Then, the matrix-valued function F given by $\mathbf{n}(H \circ \theta_t, \Lambda \cap \{t < T_0\}) = \mathbf{n}(\mathbb{E}_{X_t}(H), \Lambda \cap \{t < T_0\}),$ where θ_t denotes the shift operator; $\mathbf{3. n}(1 - e^{T_0}) < \infty.$

We say that n is self-similar if it has the following scaling property: there exists a $\gamma \in (0,1)$ such that for all a > 0, holds

 $H_a \mathbf{n} = a^{\gamma \alpha} \mathbf{n},$

where the measure $H_a\mathbf{n}$ is the image of \mathbf{n} under the mapping $H_a: \mathbb{D} \to \mathbb{D}$, defined by $H_a(\omega)(t) = a\omega(a^{-\alpha}t), t \ge 0$. The parameter γ is called the *index of self-similarity* of \mathbf{n} .

2. Main results

Cramér's condition. There exists $z_0 > 0$, such that F(z) is well defined on $(0, z_0)$ and there exists $\theta \in (0, z_0)$, such that $\kappa(\theta) = 0$. The value θ is called the *Cramér number*.

Set $\mathbb{P}^{\sharp} := \mathbb{P}^{(\theta)}$, with θ satisfying the Cramér's condition. Denote by $\hat{\mathbb{P}}^{\sharp}$ its dual. Let *I* be the functional exponential of the MAP ξ :

$$I = \int_0^\infty \exp\{\alpha\xi(t)\} \mathrm{dt}.$$

It can be shown that any rssMp for which 0 is a regular and recurrent state either leaves 0 continuously or by a jump.

Theorem 1. Let (X, P) be a rssMP with index $\alpha > 0$, which hits its cemetery point 0 in a finite time P-a.s. Let $((\xi, J), \mathbb{P})$ be the MAP associated with (X, P) via the Lamperti's transformation. Then the following conditions are equivalent: which drifts to $-\infty$. Thus, the rssMp associated with $((\xi, J), \hat{\mathbb{P}})$, via the Lamperti transformation, reaches the point zero at finite time. The matrix exponent of $((\xi, J), \hat{\mathbb{P}})$ is given by

$$\hat{F}(z) = \begin{pmatrix} -\frac{\Gamma(\alpha+z)\Gamma(1-z)}{\Gamma(\alpha\hat{\rho}+z)\Gamma(1-\alpha\hat{\rho}-z)} & \frac{\Gamma(\alpha+z)\Gamma(1-z)}{\Gamma(\alpha\hat{\rho})\Gamma(1-\alpha\hat{\rho})} \\ \frac{\Gamma(\alpha+z)\Gamma(1-z)}{\Gamma(\alpha\rho)\Gamma(1-\alpha\rho)} & -\frac{\Gamma(\alpha+z)\Gamma(1-z)}{\Gamma(\alpha\rho+z)\Gamma(1-\alpha\rho-z)} \end{pmatrix}$$

for $\operatorname{Re}(z) \in (-\alpha, 1)$ and the Cramér number is $\theta = 1 - \alpha$. Observe that condition in Theorem 1 (i) holds if and only if $\alpha > 1/2$. Thus, the recurrent extension that leaves 0 continuously exists whenever $\alpha > 1/2$.

The aforementioned process can be considered as the α -stable process conditioned to be continuously absorbed at the origin (see [4] for more details).

References

- [1] L. Chaumont, H. Pantí, and V. Rivero. The Lamperti representation of real-valued self-similar Markov processes. *Bernoulli*, 19(5B):2494–2523, 2013.
- [2] S. Dereich, L. Doering, and A. E. Kyprianou. Real Self-Similar Processes Started from the Origin. *ArXiv*

 $F(z) = \operatorname{diag}(\psi_1(z), \dots, \psi_N(z)) + Q \circ G(z),$

for all $z \in \mathbb{C}$ where the elements on the right are defined and \circ indicates the Hadamard multiplication, satisfies

 $\mathbb{E}_{0,i}[e^{z\xi(t)}; J(t) = j] = (e^{F(z)t})_{ij}, \quad i, j \in E,$

for all $z \in \mathbb{C}$ where one side of the equality is defined. The matrix *F* is called the *matrix exponent* of the MAP ξ .

The matrix F(z) has a real simple eigenvalue $\kappa(z)$, which is smooth and convex on its domain and larger than the real part of all its other eigenvalues. Furthermore, the corresponding right-eigenvector v(z) may be chosen so that $v_i(z) > 0$ for every $i \in E$, and normalised as $\pi v(z) = 1$. This allow us to construct the Wald martingale:

$$M(t,\gamma) = e^{\gamma\xi(t) - \kappa(\gamma)t} \frac{v_{J(t)}(\gamma)}{v_{J(0)}(\gamma)}, \qquad t \ge 0,$$

(i) there exist a Cramér number $\theta \in (0, \alpha)$;

(ii) there exist a recurrent extension of (X, P) that leaves 0 continuously and such that its associated excursion measure from 0, n, satisfies $n(1 - e^{-T_0}) = 1$.

In this case, the recurrent extension in (ii) is unique and the entrance law associated with the excursion measure n is, for any f bounded measurable, given by

where θ satisfies the condition (i) and

 $C_{\alpha,\theta} = \Gamma(1 - \theta/\alpha) \left[\frac{\pi_1}{v_1} \hat{\mathbb{E}}_1^{\sharp} \left(I^{\theta/\alpha - 1} \right) + \frac{\pi_{-1}}{v_{-1}} \hat{\mathbb{E}}_{-1}^{\sharp} \left(I^{\theta/\alpha - 1} \right) \right].$ Furthermore, **n** is self-similar with index $\gamma = \theta/\alpha$. *1501.00647*, 2015.

[3] P. Fitzsimmons. On the existence of recurrent extensions of self-similar markov processes. *Electron. Commun. Probab.*, 11:230–241, 2006.

[4] A. E. Kyprianou, V. M. Rivero, and W. Satitkanitkul. Conditioned real self-similar Markov processes. *ArXiv eprints*, Oct. 2015.

[5] H. Pantí, J. Pardo, and V. Rivero. Recurrent extensión of real self-similar markov processes. Preprint, 2016.

[6] V. Rivero. Recurrent extensions of self-similar Markov processes and Cramér's condition. *Bernoulli*, 11(3):471–509, 2005.

[7] V. Rivero. Recurrent extensions of self-similar Markov processes and Cramér's condition. II. *Bernoulli*, 13(4):1053–1070, 2007.