Estimates of Dirichlet heat kernel for symmetric Markov processes

Kyung-Youn Kim

Institut für Mathematische Stochastik, TU Dresden

eunicekim@snu.ac.kr, kyungyoun07@gmail.com (This is a joint work with Tomasz Grzywny in Wrocław University of Technology and Panki Kim in Seoul National University)

1 Setup

Consider symmetric Markov processes whose jumping kernels J, (1) satisfying weak scaling condition and (2) decaying exponential with damping exponent $\beta \in [0, \infty]$.

For $0 < \underline{\alpha} \leq \overline{\alpha} < 2$, let $\phi \in C^1(0, \infty)$ be an increasing function on $[0, \infty)$ satisfying that there exist positive constants $\underline{c} \leq 1$ and $1 \leq \overline{C}$ such that

$$\underline{c}\left(\frac{R}{r}\right)^{\underline{\alpha}} \leq \frac{\phi(R)}{\phi(r)} \leq \overline{C}\left(\frac{R}{r}\right)^{\overline{\alpha}} \quad \text{for } 0 < r \leq R. \quad (\mathbf{WS}).$$

Define $\nu(r) := (\phi(r)r^d)^{-1}$ for r > 0.

- (WS) implies $\int_{\mathbb{R}^d} (1 \wedge |x|^2) \nu(|x|) dx < \infty$, so there exists a pure jump isotropic unimodal Lévy process Z with the Lévy measure $\nu(|x|) dx$.
- Let $\kappa : (\mathbb{R}^d \times \mathbb{R}^d) \to (0, \infty)$ be symmetric and measurable function such that $L_0^{-1} \leq 1$

3.2 Condition on the Processes

- Condition on the regularity of $\kappa(x, y)$: (\mathbf{K}_{η}) There exist $L_3 > 0$ and $\eta > \overline{\alpha}/2$ such that $|\kappa(x, y) - \kappa(x, x)| \le L_3 |x - y|^{\eta}$ for every $x, y \in \mathbb{R}^d, |x - y| \le 1$.
- Condition on the regularity of ϕ : (SD) $\phi \in C^1(0, \infty)$ and $r \to -\nu'(r)/r$ is decreasing.

Let Y^D be a subprocess of Y killed upon leaving D and $p_D(t, x, y)$ be a transition density of Y^D . From now on, we assume that D is a $C^{1,\rho}$ open set $(\rho \in (\overline{\alpha}/2, 1])$ with characteristics (R_0, Λ_0) , and the jumping intensity kernel J satisfies (\mathbf{K}_η) and (SD).

3.3 Main results

 $\kappa(x,y) \leq L_0$ with some constant $L_0 > 1$.

Let J be a symmetric measurable function. The first set of the conditions on J is following:

(J1) (J1.1)
$$J(x,y) := \kappa(x,y)\nu(|x-y|)$$
 on $|x-y| \le 1$,
(J1.2) $\sup_{x} \int_{|x-y|>1} J(x,y)dy < \infty$,
(J1.3) For any $M > 0$, there exists $C_M > 1$ such that
 $C_M^{-1}\nu(|x-y|) \le J(x,y) \le C_M\nu(|x-y|)$ for $|x-y| < M$.

Let χ be a nondecreasing function on $(0, \infty)$ with $\chi(r) = \chi(0)$ for $r \in (0, 1]$, and let there exist $\gamma_1, \gamma_2, L_1, L_2 > 0$ and $\beta \in [0, \infty]$ such that $L_1 e^{\gamma_1 r^{\beta}} \leq \chi(r) \leq L_2 e^{\gamma_2 r^{\beta}}$ for r > 1. The second set of the conditions on J is following:

$$\begin{aligned} \mathbf{J2}) \ J(x,y) &:= \kappa(x,y)\nu(|x-y|)\chi(|x-y|)^{-1} \\ &= \begin{cases} \kappa(x,y) \left(\phi(|x-y|)|x-y|^d \cdot \chi(|x-y|)\right)^{-1} & \text{if } \beta \in [0,\infty), \\ \kappa(x,y) \left(\phi(|x-y|)|x-y|^d\right)^{-1} \mathbf{1}_{\{|x-y| \le 1\}} & \text{if } \beta = \infty. \end{cases} \end{aligned}$$

- Clearly (J2) implies (J1.1) and (J1.2).

- Moreover, if (J2) holds and $\beta \neq \infty$, then (J1) holds.

Define the Dirichlet form $(\mathcal{E}, \mathcal{F})$ associated with the jumping kernel J:

$$\mathcal{E}(u,v) = \frac{1}{2} \int \int (u(x) - u(y))(v(x) - v(y)J(x,y)dxdy,$$

and $\mathcal{F} = \{u \in L^2(\mathbb{R}^d) : \mathcal{E}(u, u) < \infty\}$. Under the conditions (**J1.1**) and (**J1.2**), by Schilling & Uemura [5, Theorem 2.1] and [6, Theorem 2.4], $(\mathcal{E}, \mathcal{F})$ is a regular (symmetric) Dirichlet form on $L^2(\mathbb{R}^d, dx)$. Moreover, the corresponding Hunt process Y is conservative and Y has Hölder continuous transition density p(t, x, y) on $(0, \infty) \times \mathbb{R}^d \times \mathbb{R}^d$ (See, Fukushima, Oshima

Let $\delta_D(x)$ be a distance between x and D^c , and let $\Psi(t, x) := \left(1 \wedge \frac{\sqrt{\phi(\delta_D(x))}}{\sqrt{t}}\right)$.

Theorem 3: *J* **satisfies (J1).**

Suppose D is bounded and T > 0.

(1) There exists $c_1 > 0$ such that for any $(t, x, y) \in (0, T] \times D \times D$,

 $c_1^{-1}\Psi(t,x)\Psi(t,y)\,p(t,x,y) \le p_D(t,x,y) \le c_1\Psi(t,x)\Psi(t,y)\,p(t,x,y).$

(2) There exists $c_2 \ge 1$ such that for any $(t, x, y) \in [T, \infty) \times D \times D$,

 $c_2^{-1}e^{-t\lambda^D}\sqrt{\phi(\delta_D(x))}\sqrt{\phi(\delta_D(y))} \le p_D(t,x,y) \le c_2e^{-t\lambda^D}\sqrt{\phi(\delta_D(x))}\sqrt{\phi(\delta_D(y))},$

where $-\lambda^D < 0$ is the largest eigenvalue of the generator of Y^D .

(E) (additional assumption on D) The path distance in an open set U is comparable to the Euclidean distance with characteristic λ_1 : if for any x, y in the U, there exists a curve l in U connecting x and y such that $|l| \leq \lambda_1 |x - y|$.

Theorem 4: *J* **satisfies (J2).**

[Small time estimate]

(1) [the upper bound] There exists $c_1 > 0$ such that for any $(t, x, y) \in (0, T] \times D \times D$,

 $p_D(t, x, y) \le c_1 \Psi(t, x) \Psi(t, y) \begin{cases} F_{C_1 \land \gamma_1, \gamma_1, T}(t, |x - y|/6) & \text{if } \beta \in [0, \infty), \\ F_{C_1, \gamma_1, T}(t, |x - y|/6) & \text{if } \beta = \infty, \end{cases}$

where C_1 is the constant in Theorem 2. (2) [the lower bound] There exists $c_2 > 0$ such that for any $(t, x, y) \in (0, T] \times D \times D$, $p_D(t, x, y) \ge c_2 \Psi(t, x) \Psi(t, y) \begin{cases} [\phi^{-1}(t)]^{-d} \wedge \frac{t\nu(|x-y|)}{e^{\gamma_2|x-y|\beta}} & \text{if } \beta \in [0, 1], \\ [\phi^{-1}(t)]^{-d} \wedge t\nu(|x-y|) & \text{if } \beta \in (1, \infty) \& |x-y| < 1, \\ \text{or } \beta = \infty \& |x-y| \le 4/5 \end{cases}$

& Takeda [3]).

2 Heat Kernel Estimates of Y

Let $a \wedge b := \min\{a, b\}$.

Theorem 1: J satisfies (J1.2) and (J1.3). For each M, T > 0, there exists $c \ge 1$ such that for every $(t, x, y) \in (0, T] \times \mathbb{R}^d \times \mathbb{R}^d$ with |x - y| < M,

 $c^{-1}\left([\phi^{-1}(t)]^{-d} \wedge t\nu(x,y) \right) \le p(t,x,y) \le c \left([\phi^{-1}(t)]^{-d} \wedge t\nu(x,y) \right)$

where $\phi^{-1}(t)$ is the inverse function of $\phi(t)$.

For each $a, \gamma, T > 0$, define a function $F_{a,\gamma,T}(t,r)$ on $(0,T] \times [0,\infty)$ as

$$F_{a,\gamma,T}(t,r) := \begin{cases} [\phi^{-1}(t)]^{-d} \wedge t\nu(r)e^{-\gamma r^{\beta}} & \text{if } \beta \in [0,1], \\ [\phi^{-1}(t)]^{-d} \wedge t\nu(r) & \text{if } \beta \in (1,\infty] \text{ with } r < 1, \\ t \exp\left\{-a\left(r\left(\log\frac{Tr}{t}\right)^{\frac{\beta-1}{\beta}} \wedge r^{\beta}\right)\right\} & \text{if } \beta \in (1,\infty) \text{ with } r \ge 1, \\ (t/(Tr))^{ar} = \exp\left\{-ar\left(\log\frac{Tr}{t}\right)\right\} & \text{if } \beta = \infty \text{ with } r \ge 1. \end{cases}$$

Theorem 2: *J* **satisfies (J2).**

For each T > 0, there exist C_1 , c_1 and $c_2 \ge 1$ such that for every $(t, x, y) \in (0, T] \times \mathbb{R}^d \times \mathbb{R}^d$,

 $c_2^{-1}F_{c_1,\gamma_2,T}(t,|x-y|) \leq p(t,x,y) \leq c_2 F_{C_1,\gamma_1,T}(t,|x-y|).$

- The upper bound of Theorem 1 comes from Chen, Kim & Song [2, (2.6)].

where $\phi^{-1}(t)$ is the inverse function of $\phi(t)$. (3) [the lower bound] Suppose that *D* has the assumption (E). There exist $c_3, c_4 > 0$ such that for every x, y in the same component of *D* and $t \leq T$,

 $p_D(t, x, y) \ge c_3 \Psi(t, x) \Psi(t, y) \begin{cases} F_{c_4, \gamma_2, T}(t, |x - y|) & \text{if } \beta \in (1, \infty) \& |x - y| \ge 1, \\ F_{c_4, \gamma_2, T}(t, 5|x - y|/4) & \text{if } \beta = \infty \& |x - y| \ge 4/5. \end{cases}$

(4) [the lower bound] If $\beta \in (1, \infty)$, there exists $c_5 > 0$ such that for every x, y in the different components of D with $|x - y| \ge 1$,

 $p_D(t, x, y) \ge c_5 \Psi(t, x) \Psi(t, y) \frac{t\nu(|x - y|)}{e^{\gamma_2(5|x - y|/4)^{\beta}}}.$

[Large time estimates for $\beta = \infty$] Suppose that *D* is bounded and connected. Then Theorem 3(2) hold, i.e., there exists $c_6 \ge 1$ such that for any $(t, x, y) \in [T, \infty) \times D \times D$,

 $c_6^{-1}e^{-t\lambda^D}e^{-t\lambda^D}\sqrt{\phi(\delta_D(x))}\sqrt{\phi(\delta_D(y))} \le p_D(t, x, y) \le c_6e^{-t\lambda^D}\sqrt{\phi(\delta_D(x))}\sqrt{\phi(\delta_D(y))},$ where $-\lambda^D < 0$ is the largest eigenvalue of the generator of Y^D .

References

- Also the upper bound of Theorem 2 comes from Kaleta & Sztonyk [4, Theorem 2, Proposition 1] for $\beta \in [0, 1]$ case, and Chen, Kim & Kumagai [1, Theorems 1.2 and 1.4] for $\beta \in (1, \infty]$ case.

3 Dirichlet Heat Kernel Estimates for Y^D

3.1 Assumptions on Open Sets

An open set D in \mathbb{R}^d (when $d \ge 2$) is said to be a $C^{1,\rho}$ open set for $\rho \in (0,1]$: if there exists a localization radius $R_0 > 0$ and a constant $\Lambda_0 > 0$ such that for any $z \in \partial D$, there exists a $C^{1,\rho}$ -function $\psi = \psi_z : \mathbb{R}^{d-1} \to \mathbb{R}$ satisfying

 $\psi(0) = 0, \, \nabla\psi(0) = (0, \cdots, 0), \, \|\nabla\psi\|_{\infty} \le \Lambda_0, |\nabla\psi(x) - \nabla\psi(y)| \le \Lambda_0 |x - y|^{\rho}$

and there exists an orthonormal coordinate system CS_z of $z = (z_1, \dots, z_{d-1}, z_d) := (\tilde{z}, z_d)$ such that

 $B(z, R_0) \cap D = \{ y = (\widetilde{y}, y_d) \in B(0, R_0) \text{ in } CS_z : y_d > \psi(\widetilde{y}) \}.$

The pair (R_0, Λ_0) is called the characteristic of the $C^{1,\rho}$ open set D.

- [1] Z.-Q. Chen, P. Kim, and T. Kumagai. Global heat kernel estimates for symmetric jump processes. *Trans. Amer. Math. Soc.*, 363(9):5021–5055, 2011.
- [2] Z.-Q. Chen, P. Kim, and R. Song. Dirichlet heat kernel estimates for rotationally symmetric Lévy processes. *Proc. Lond. Math. Soc. (3)*, 109(1):90–120, 2014.
- [3] M. Fukushima, Y. Oshima and M. Takeda, *Dirichlet Forms and Symmetric Markov Processes*. Walter De Gruyter, Berlin, 1994.
- [4] K. Kaleta and P. Sztonyki. Upper estimates of transition densities for stable-dominated semigroups. J. Evol. Equ., 13:633–650, 2013.
- [5] R. L. Schilling and T. Uemura. On the Feller property of Dirichlet forms generated by pseudo differential operators. *Tohoku Math. J.* (2), 59(3):401–422, 2007.
- [6] R. L. Schilling and T. Uemura. On the structure of the domain of a symmetric jump-type Dirichlet form. *Publ. Res. Inst. Math. Sci.*, 48(1):1–20, 2012.