The sensitivity of the solution to a Lévy driven SDE with respect to perturbations of the noise

Tetiana Kosenkova, Potsdam University

The model

Consider the SDE with Lévy noise, i.e. the process of the following type

 $X(t) = x + \int_0^t V(X(s)) ds + Z(t)$ $t \ge 0, x \in \mathbb{R}$, (1) where the function $V : \mathbb{R} \to \mathbb{R}$ is smooth enough and $(Z(t))_{t\ge 0}$ is a Lévy process. It is uniquely determined by a characteristic triplet (a,b,Π) and satisfies the *ltô-Lévy representation*: $Z_j(t) = at + \sqrt{b}W(t) + \int_0^t \int_{|u|\le 1} u\tilde{v}(ds,du) + \int_0^t \int_{|u|>1} u v(ds,du), t \ge 0$, where v is a Poisson point measure with an intensity measure $\lambda\Pi$ and λ is the Lebesgue measure.

Background

In climatology the SDE's of the type (1) are used to describe *climate dynamics of the oceanic flow* [Ditlevsen, Geophys. Res. Lett. 1999].

In such models function *V* is considered as the gradient of an "energy potential" $U : \mathbb{R} \to \mathbb{R}$ with two local minima such that V = -U' which correspond to two climate equilibrium states.

Model selection problem

Question: how to verify the hypothesis that the available data follow a model described by the SDE (1)? Solution: estimate a distance between two solutions to the SDE (1) with different noises in terms of a distance between the characteristic triplets and use it for "goodness-of-fit" test for the model, [Gairing, Högele, K, Kulik, Springer INdAM Volume, 2016]

Question: how to measure a distance between the characteristic triplets, i.e. between Lévy measures?

"Heads" and "Tails" for Lévy measures

Coupling distance

For Lévy measures Π_1, Π_2 and r > 0 define the probability measure $\pi^r = \frac{1}{r} \Pi^{T,r}$ and the quantities

 $T(\Pi_1,\Pi_2) := \sup_{r>0} r^{1/2} W_{2,\rho}(\pi_1^r,\pi_2^r), r>0.$

We shall call *T* a *coupling distance* on the set of Lévy measures. Here $W_{2,p}$ is a coupling-type *Wasserstein-Kantorovich-Rubinstein metric* of order 2, with the metric ρ on \mathbb{R} defined by $\rho(x,y) = |x-y| \wedge 1$, $x, y \in \mathbb{R}$. Below, for $W_{2,\zeta}$ we will use a metric ζ on the space of càdlàg paths $\mathbb{D}(0,1)$, defined by $\zeta(x,y) = \sup_{t \in [0,1]} \rho(x(t), y(t))$. **Proposition** The function *T* is a metric on the set of Lévy measures.

Deviation between the solutions to SDE's

Consider two Lévy processes $(Z_j(t))_{t\geq 0}$, j = 1, 2 and the solutions to the SDE's $X_j(t)$, j = 1, 2 of type (1) and the function $V : \mathbb{R} \to \mathbb{R}$ is *one-sided Lipschitz*, i.e. $(V(x) - V(y))(x-y) \le L(x-y)^2$, $x, y \in \mathbb{R}$ for some L > 0.

Theorem Let (a_j, b_j, Π_j) be two characteristic triplets and $x_j \in \mathbb{R}$ given initial values, j = 1, 2. Then, for any two solutions X_j to SDE's of the type (1) the following holds

$$\begin{split} W_{2,\zeta}^2 \Big(\mathrm{Law}(X_1), \mathrm{Law}(X_2) \Big) &\leq 2(\rho^2(x_1, x_2) + Q) e^{2.16 L} + Q_1, \\ \text{where } Q &= |a_1 - a_2| + (\sqrt{b_1} - \sqrt{b_2})^2 + 4T^2(\Pi_1, \Pi_2) \\ + 2(\Pi_1(|u| > 1) + \Pi_2(|u| > 1))^{1/2} T(\Pi_1, \Pi_2), \\ Q_1 &= 3\sqrt{(\sqrt{b_1} - \sqrt{b_2})^2 + T^2(\Pi_1, \Pi_2)}. \end{split}$$

Reference

Coupling distances between Lévy measures and applications to noise sensitivity of SDE, J. Gairing, M. Högele, T. Kosenkova, A. Kulik, Stoch. Dyn., 15(2) 2015.