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1 Introduction

In this research project, we establish explicit solutions to a broad class of time-fractional
Cauchy problems

Pu(x,t) = Lu(x,t); u(0) = f(x)

on a regular bounded domain () in d-dimensional Euclidean space, where Bf is the Caputo
fractional derivative of order 0 < 8 < 1 and L is the semigroup generator of some Markov
process on RY. In particular, we allow the operator L to be nonlocal in space. One important
outcome of this research is to describe the appropriate version of these nonlocal operators on
a bounded domain. Our method of proof uses a fundamental result of [1] from the theory of
semigroups, along with some ideas from the theory of Markov processes. This probabilistic
method also establishes stochastic solutions for these equations, i.e., we describe a stochas-
tic process whose probability density functions solve the time-fractional and space-nonlocal
diffusion problem on the bounded domain.

2 Killed Feller processes

Let X; be a Feller process in R%. That is, for any x € R¥, the linear operators defined by

Pif(x) := E*[f(X;)] form a strongly continuous, contraction semigroup on Co(R%). The in-
finitesimal generator of X; is defined by

T &7 el d
Lf = }{% — InGy(RY), (1)

with the domain D(L) C Cy(R4). If C¥(R?) € D(L), then [3] shows that for any f € C%(Rd)
we have
LF(x) = PDOf](x) i= — c(x) f(x) + 1(x) - V(x) + V - Q) V f(x) 2

* oo (f(x+y) — f(x) = Vf(x) -yl (y)) N(x,dy)

for some c(x) > 0,1(x) € R, Q(x) € R4*? symmetric and positive definite, N(x, -) a positive
measure satisfying

/Rd\{o} min(|y|%, 1)N(x,dy) < oo,

and By the unit ball. Let QO C R be a bounded domain. We define the killed process on Q) by

XQ _ Xt, t < Oy
g B, t Z Oy

where 7y = inf {t > 0: X; ¢ (0} and d denotes a cemetery point. We say that () is regular if
every boundary point of () satisfies

Px(TQ — O) = 1.

A Markov process X; on R? or its semigroup P; is strong Feller if for any bounded measurable
real-valued function f with compact support on R%, P;f(x) is bounded and continuous on

R?. We say that a Feller process (resp., semigroup) is doubly Feller if it also has the strong
Feller property.

3 The generator of a killed Feller process

Let X; be a doubly Feller process in R? and let Q@ C R% be a regular bounded domain. We
denote by Cy(Q2) the set of continuous real-valued functions on () that tend to zero as x €
Q) approaches the boundary. It follows from [2] that P{}f(x) := E*[f(X}?)] defines a Feller

semigroup on Cy(Q2). Let L be the infinitesimal generator of PtQ.

Theorem 1. The domain of L, 1s given by
D(Lg) ={f € Co(Q) : L*f € Co(Q)}, (3)

where L denotes the pointwise limit in (1) applied to the zero extension of Cy(Q). Also Laf(x) =
LEf(x) for all x € Q, and the convergence to L f holds uniformly on compact subsets of Q.

Next we show that functions in D(L¢) can be characterized as functions in Cy(Q)) that are
locally in the domain of L. This will be used for explicitly computing the generator L.

Theorem 2. We have

D(La) = {f € Co(Q) : Ig € Cy(Q), (fu) C D(L) we have f, — f in Co(R%)

4
and Lf;, — g uniformly on compact subsets of (3}, )

and for f, g as in (4) we have Laf = g.

Finally, we show that we can evaluate the generator L f(x) of the killed Feller process point-
wise for x € () using the explicit formula (2) for Lf(x). Let C%(Q) denote the set of Cy(Q2)
functions with first and second order partial derivatives that are continuous at every x € ().

Theorem 3. Suppose that C(%(Rd) is a core of L, so that Lf(x) = PDO{f](x) for every x € R% and

f € C%(Rd). Then:

e For every f € D(Ln) there exists f;; € C%(Q) such that f;, — f uniformly and PDO|fy]
converges uniformly on compact subsets of () to Ly f.

o If fu € C3(Q) is such that f, — f € Co(Q) uniformly and PDO[f,] — g € Co(Q) converges
uniformly on compact subsets of Q), then f € D(Lq) and Laf = g.

jlrn particular, ;j;f € C(%(Q) and PDO|f] € Cy(Q), then f € D(Lqn) and Laf(x) = PDO|f](x)
or every x € Q).

Mark M. Meerschaert
Michigan State University

PADERBORN
L&\ UNIVERSITY

mcubed@stt.msu.edu

4 Fractional derivatives

The positive and negative Riemann-Liouville fractional derivatives are defined by

D f () = For—ayaan . £ =)™y,

D, yf () = per s [ )y =0y

for any non-integer « > 0 and any —oco < L < x < R < oo, wheren —1 < a < n. The positive
and negative Caputo fractional derivatives are defined by

ot vf () = F(nl— w) /fo M (y) (x — y)" = ay,
_1\n R
of g f (%) = rgn Y fx F () (y — x)" " dy.

— )

If 0 < B < 1, then it follows by the uniqueness of the Laplace transform that

=P
A,/ (1) = Dlg  f(1) = e

g/ (0) (5)

Using Theorem 3 we can compute the generator of a killed stable process X; on an interval in
terms of fractional derivatives.

Theorem 4. Let X; be any stable Lévy process with index 1 < a < 2 and let () = (L, R). Then for
all x € Qand any f € C(%(Q) such that PDO|f] € Cy(Q)) we have

Laf(x) = —af(x) + bl f(x) + cDf, gf(x).

5 Applications to fractional Cauchy problems

Let gg(u) denote the probability density function of the standard stable subordinator, with
the Laplace transform

Ry dy — =5
/Oe gp(u)du =e

for some 0 < B < 1. Suppose that D; is a Lévy process such that gg(u) is the probability
density of D1, and define the inverse stable subordinator (first passage time)

E; :inf{u >0:Dy > t}.

Then [1] implies that the function

> 0
o(x,t) i= | ga(r)P,)f (x)dr
is the unique solution to the time-fractional Cauchy problem
=P
[(1-p

for any f € D(Lq). Using (5), it follows that the same function also solves

]va(x,t) = Lav(x,t) + )f(O); v(x,0) = f(x)

va =Lav;, v(0)=Ff

for any f € D(Lq). Since

h(w,t) = iw_l_l/ﬁgﬁ(ifw_l/ﬁ)

P
is the probability density function of the inverse stable subordinator E, it follows by a simple
change of variables that

o0

o(x, t) = /O " h(w, ) PQf (x) dw — /O u(x, w)h(w, ¢) dw = BX[f(X2)].

Example. Let X; be any stable Lévy process with index 1 < a < 2 and let 3 = (L, R). By

Theorem 3 and Theorem 4, L is the unique closed extension of —ady + b ]D‘f‘L e ]D‘f‘x R]

Then the function u(x,t) = E*|f(X})[{t < t}] is the unique solution to the space-fractional
Dirichlet problem

dru(x,t) = —adyu(x,t) + b]D‘f‘L’x]u(x,t) — c]Df‘x’R]u(x,t) VxeQ, t>0
u(x,0)=f(x) Vxe) (6)
u(x,t) =0 VxgQ,t>0

for any f € D(Ln), and the unique mild solution to (6) for any f € Cy(Q2). Also, for any
0 < B < 1the functionv(x,t) = E*|f (Xg)] is the unique solution to the space-time fractional
Dirichlet problem

Btﬁv(x,t) = —adyv(x,t) + le‘["L,x]v(x,t) + cID‘["x,R]v(x,t) VxeQ, t>0
v(x,0) = f(x) Vxe (7)
v(x,t) =0 Vx¢&O,t>0

for any f € D(L@), and the unique mild solution to (7) for any f € Cy(Q2).
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