SPACE-TIME FRACTIONAL DIRICHLET PROBLEMS

Boris Baeumer

University of Otago Paderk bbaeumer@maths.otago.ac.nz tluks@

Tomasz Luks Paderborn University tluks@math.upb.de Mark M. Meerschaert Michigan State University mcubed@stt.msu.edu

1 Introduction

In this research project, we establish explicit solutions to a broad class of time-fractional Cauchy problems

 $\partial_t^\beta u(x,t) = Lu(x,t); \quad u(0) = f(x)$

on a regular bounded domain Ω in *d*-dimensional Euclidean space, where ∂_t^{β} is the Caputo fractional derivative of order $0 < \beta < 1$ and *L* is the semigroup generator of some Markov process on \mathbb{R}^d . In particular, we allow the operator *L* to be nonlocal in space. One important outcome of this research is to describe the appropriate version of these nonlocal operators on a bounded domain. Our method of proof uses a fundamental result of [1] from the theory of semigroups, along with some ideas from the theory of Markov processes. This probabilistic method also establishes stochastic solutions for these equations, i.e., we describe a stochastic process whose probability density functions solve the time-fractional and space-nonlocal

4 Fractional derivatives

The positive and negative Riemann-Liouville fractional derivatives are defined by

$$\mathbb{D}_{[L,x]}^{\alpha}f(x) = \frac{1}{\Gamma(n-\alpha)} \frac{d^n}{dx^n} \int_L^x f(y)(x-y)^{n-\alpha-1} dy,$$
$$\mathbb{D}_{[x,R]}^{\alpha}f(x) = \frac{(-1)^n}{\Gamma(n-\alpha)} \frac{d^n}{dx^n} \int_x^R f(y)(y-x)^{n-\alpha-1} dy$$

for any non-integer $\alpha > 0$ and any $-\infty \le L < x < R \le \infty$, where $n - 1 < \alpha < n$. The positive and negative Caputo fractional derivatives are defined by

$$\partial^{\alpha}_{[L,x]}f(x) = \frac{1}{\Gamma(n-\alpha)} \int_{L}^{x} f^{(n)}(y)(x-y)^{n-\alpha-1} dy,$$

2 Killed Feller processes

Let X_t be a Feller process in \mathbb{R}^d . That is, for any $x \in \mathbb{R}^d$, the linear operators defined by $P_t f(x) := \mathbb{E}^x [f(X_t)]$ form a strongly continuous, contraction semigroup on $C_0(\mathbb{R}^d)$. The infinitesimal generator of X_t is defined by

$$Lf = \lim_{t \searrow 0} \frac{P_t f - f}{t} \quad \text{in } C_0(\mathbf{R}^d), \tag{1}$$

with the domain $\mathcal{D}(L) \subset C_0(\mathbb{R}^d)$. If $C_c^{\infty}(\mathbb{R}^d) \subset \mathcal{D}(L)$, then [3] shows that for any $f \in C_0^2(\mathbb{R}^d)$ we have

$$Lf(x) = PDO[f](x) := -c(x)f(x) + l(x) \cdot \nabla f(x) + \nabla \cdot Q(x)\nabla f(x) + \int_{\mathbf{R}^d \setminus \{0\}} (f(x+y) - f(x) - \nabla f(x) \cdot yI_{B_1}(y)) N(x, dy)$$
(2)

for some $c(x) \ge 0$, $l(x) \in \mathbb{R}^d$, $Q(x) \in \mathbb{R}^{d \times d}$ symmetric and positive definite, $N(x, \cdot)$ a positive measure satisfying

$$\min(|y|^2,1)N(x,dy)<\infty,$$

and B_1 the unit ball. Let $\Omega \subset \mathbf{R}^d$ be a bounded domain. We define the killed process on Ω by

$$X_t^{\Omega} = \begin{cases} X_t, & t < \tau_{\Omega}, \\ \partial, & t \ge \tau_{\Omega}, \end{cases}$$

where $\tau_{\Omega} = \inf \{t > 0 : X_t \notin \Omega\}$ and ∂ denotes a cemetery point. We say that Ω is regular if

$$\partial^{\alpha}_{[x,R]}f(x) = \frac{(-1)}{\Gamma(n-\alpha)} \int_{x}^{n-\alpha-1} f^{(n)}(y)(y-x)^{n-\alpha-1} dy.$$

If $0 < \beta < 1$, then it follows by the uniqueness of the Laplace transform that

$$\partial_{[0,t]}^{\beta} f(t) = \mathbb{D}_{[0,t]}^{\beta} f(t) - \frac{t^{-\beta}}{\Gamma(1-\beta)} f(0).$$
(5)

Using Theorem 3 we can compute the generator of a killed stable process X_t on an interval in terms of fractional derivatives.

Theorem 4. Let X_t be any stable Lévy process with index $1 < \alpha < 2$ and let $\Omega = (L, R)$. Then for all $x \in \Omega$ and any $f \in C_0^2(\Omega)$ such that $PDO[f] \in C_0(\Omega)$ we have

 $L_{\Omega}f(x) = -af'(x) + b \mathbb{D}^{\alpha}_{[L,x]}f(x) + c \mathbb{D}^{\alpha}_{[x,R]}f(x).$

5 Applications to fractional Cauchy problems

Let $g_{\beta}(u)$ denote the probability density function of the standard stable subordinator, with the Laplace transform

 $\int_0^\infty e^{-su}g_\beta(u)du = e^{-s^\beta}$

for some $0 < \beta < 1$. Suppose that D_t is a Lévy process such that $g_\beta(u)$ is the probability density of D_1 , and define the *inverse stable subordinator* (first passage time)

$$E_t = \inf\{u > 0 : D_u > t\}.$$

Then [1] implies that the function

every boundary point of Ω satisfies

 $\mathbf{P}^{\chi}(\tau_{\Omega}=0)=1.$

A Markov process X_t on \mathbf{R}^d or its semigroup P_t is *strong Feller* if for any bounded measurable real-valued function f with compact support on \mathbf{R}^d , $P_t f(x)$ is bounded and continuous on \mathbf{R}^d . We say that a Feller process (resp., semigroup) is *doubly Feller* if it also has the strong Feller property.

3 The generator of a killed Feller process

Let X_t be a doubly Feller process in \mathbb{R}^d and let $\Omega \subset \mathbb{R}^d$ be a regular bounded domain. We denote by $C_0(\Omega)$ the set of continuous real-valued functions on Ω that tend to zero as $x \in \Omega$ approaches the boundary. It follows from [2] that $P_t^{\Omega} f(x) := \mathbb{E}^x[f(X_t^{\Omega})]$ defines a Feller semigroup on $C_0(\Omega)$. Let L_Ω be the infinitesimal generator of P_t^{Ω} .

Theorem 1. *The domain of* L_{Ω} *is given by*

$$\mathcal{D}(L_{\Omega}) = \{ f \in C_0(\Omega) : L^{\sharp} f \in C_0(\Omega) \},$$
(3)

where $L^{\sharp}f$ denotes the pointwise limit in (1) applied to the zero extension of $C_0(\Omega)$. Also $L_{\Omega}f(x) = L^{\sharp}f(x)$ for all $x \in \Omega$, and the convergence to $L^{\sharp}f$ holds uniformly on compact subsets of Ω .

Next we show that functions in $\mathcal{D}(L_{\Omega})$ can be characterized as functions in $C_0(\Omega)$ that are locally in the domain of *L*. This will be used for explicitly computing the generator L_{Ω} .

Theorem 2. *We have*

$$\mathcal{D}(L_{\Omega}) = \{ f \in C_0(\Omega) : \exists g \in C_0(\Omega), (f_n) \subset \mathcal{D}(L) \text{ we have } f_n \to f \text{ in } C_0(\mathbb{R}^d)$$
(4)

$$v(x,t) := \int_0^\infty g_\beta(r) P^{\Omega}_{(t/r)^\beta} f(x) \, dr$$

is the unique solution to the time-fractional Cauchy problem

$$\mathbb{D}_t^{\beta} v(x,t) = L_{\Omega} v(x,t) + \frac{t^{-\beta}}{\Gamma(1-\beta)} f(0); \quad v(x,0) = f(x)$$

for any $f \in \mathcal{D}(L_{\Omega})$. Using (5), it follows that the same function also solves

$$\partial_t^\beta v = L_\Omega v; \quad v(0) = f$$

for any $f \in \mathcal{D}(L_{\Omega})$. Since

$$h(w,t) = \frac{t}{\beta} w^{-1-1/\beta} g_{\beta}(tw^{-1/\beta})$$

is the probability density function of the inverse stable subordinator E_t , it follows by a simple change of variables that

$$v(x,t) = \int_0^\infty h(w,t) P_w^\Omega f(x) \, dw = \int_0^\infty u(x,w) h(w,t) \, dw = \mathbf{E}^x [f(X_{E_t}^\Omega)].$$

Example. Let X_t be any stable Lévy process with index $1 < \alpha < 2$ and let $\Omega = (L, R)$. By Theorem 3 and Theorem 4, L_{Ω} is the unique closed extension of $-a\partial_x + b \mathbb{D}^{\alpha}_{[L,x]} + c \mathbb{D}^{\alpha}_{[x,R]}$. Then the function $u(x,t) = \mathbf{E}^x[f(X_t)I\{\tau_{\Omega} < t\}]$ is the unique solution to the space-fractional Dirichlet problem

$$\partial_{t}u(x,t) = -a\partial_{x}u(x,t) + b\mathbb{D}^{\alpha}_{[L,x]}u(x,t) + c\mathbb{D}^{\alpha}_{[x,R]}u(x,t) \quad \forall x \in \Omega, \ t > 0$$

$$u(x,0) = f(x) \quad \forall x \in \Omega;$$

$$u(x,t) = 0 \quad \forall x \notin \Omega, t \ge 0$$
 (6)

for any $f \in \mathcal{D}(L_{\Omega})$, and the unique mild solution to (6) for any $f \in C_0(\Omega)$. Also, for any $0 < \beta < 1$ the function $v(x, t) = \mathbf{E}^x[f(X_{E_t}^{\Omega})]$ is the unique solution to the space-time fractional Dirichlet problem

and $Lf_n \to g$ uniformly on compact subsets of Ω ,

and for f, g as in (4) we have $L_{\Omega}f = g$.

Finally, we show that we can evaluate the generator $L_{\Omega}f(x)$ of the killed Feller process pointwise for $x \in \Omega$ using the explicit formula (2) for Lf(x). Let $C_0^2(\Omega)$ denote the set of $C_0(\Omega)$ functions with first and second order partial derivatives that are continuous at every $x \in \Omega$.

Theorem 3. Suppose that $C_0^2(\mathbf{R}^d)$ is a core of *L*, so that Lf(x) = PDO[f](x) for every $x \in \mathbf{R}^d$ and $f \in C_0^2(\mathbf{R}^d)$. Then:

• For every $f \in \mathcal{D}(L_{\Omega})$ there exists $f_n \in C_0^2(\Omega)$ such that $f_n \to f$ uniformly and $PDO[f_n]$ converges uniformly on compact subsets of Ω to $L_{\Omega}f$.

• If $f_n \in C_0^2(\Omega)$ is such that $f_n \to f \in C_0(\Omega)$ uniformly and $PDO[f_n] \to g \in C_0(\Omega)$ converges uniformly on compact subsets of Ω , then $f \in \mathcal{D}(L_\Omega)$ and $L_\Omega f = g$.

In particular, if $f \in C_0^2(\Omega)$ and $PDO[f] \in C_0(\Omega)$, then $f \in \mathcal{D}(L_\Omega)$ and $L_\Omega f(x) = PDO[f](x)$ for every $x \in \Omega$.

$$\partial_{t}^{\beta} v(x,t) = -a \partial_{x} v(x,t) + b \mathbb{D}_{[L,x]}^{\alpha} v(x,t) + c \mathbb{D}_{[x,R]}^{\alpha} v(x,t) \quad \forall x \in \Omega, \ t > 0$$

$$v(x,0) = f(x) \quad \forall x \in \Omega;$$

$$v(x,t) = 0 \quad \forall x \notin \Omega, t \ge 0$$
(7)

for any $f \in \mathcal{D}(L_{\Omega})$, and the unique mild solution to (7) for any $f \in C_0(\Omega)$.

References

- [1] B. Baeumer and M. M. Meerschaert, *Stochastic solutions for fractional Cauchy problems*, Fract. Calc. Appl. Anal. **4** (2001), 481–500.
- [2] K.L. Chung *Doubly-Feller process with multiplicative functional*, In: Seminar on Stochastic Processes, (1985), Progr. Probab. Statist **12**, 63–78.
- [3] P. Courrège, *Sur la forme intégro-différentielle du générateur infinitésimal d'un semi-groupe de Feller sur une variété*, In: Séminaire Brelot-Choquet-Deny. Théorie du potentiel, tome 10, no. 1 (1965/1966), exposé no. 3, pp. 1–48.