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1 Introduction

In this research project, we establish explicit solutions to a broad class of time-fractional
Cauchy problems

∂
β
t u(x, t) = Lu(x, t); u(0) = f (x)

on a regular bounded domain Ω in d-dimensional Euclidean space, where ∂
β
t is the Caputo

fractional derivative of order 0 < β < 1 and L is the semigroup generator of some Markov
process on Rd. In particular, we allow the operator L to be nonlocal in space. One important
outcome of this research is to describe the appropriate version of these nonlocal operators on
a bounded domain. Our method of proof uses a fundamental result of [1] from the theory of
semigroups, along with some ideas from the theory of Markov processes. This probabilistic
method also establishes stochastic solutions for these equations, i.e., we describe a stochas-
tic process whose probability density functions solve the time-fractional and space-nonlocal
diffusion problem on the bounded domain.

2 Killed Feller processes

Let Xt be a Feller process in Rd. That is, for any x ∈ Rd, the linear operators defined by
Pt f (x) := Ex[ f (Xt)] form a strongly continuous, contraction semigroup on C0(Rd). The in-
finitesimal generator of Xt is defined by

L f = lim
t↘0

Pt f − f
t

in C0(R
d), (1)

with the domain D(L) ⊂ C0(Rd). If C∞
c (Rd) ⊂ D(L), then [3] shows that for any f ∈ C2

0(R
d)

we have

L f (x) = PDO[ f ](x) :=− c(x) f (x) + l(x) · ∇ f (x) +∇ ·Q(x)∇ f (x) (2)

+
∫

Rd\{0}

(
f (x + y)− f (x)−∇ f (x) · yIB1

(y)
)

N(x, dy)

for some c(x) ≥ 0, l(x) ∈ Rd, Q(x) ∈ Rd×d symmetric and positive definite, N(x, ·) a positive
measure satisfying ∫

Rd\{0}
min(|y|2, 1)N(x, dy) < ∞,

and B1 the unit ball. Let Ω ⊂ Rd be a bounded domain. We define the killed process on Ω by

XΩ
t =

{
Xt, t < τΩ,
∂, t ≥ τΩ,

where τΩ = inf {t > 0 : Xt /∈ Ω} and ∂ denotes a cemetery point. We say that Ω is regular if
every boundary point of Ω satisfies

Px(τΩ = 0) = 1.

A Markov process Xt on Rd or its semigroup Pt is strong Feller if for any bounded measurable
real-valued function f with compact support on Rd, Pt f (x) is bounded and continuous on
Rd. We say that a Feller process (resp., semigroup) is doubly Feller if it also has the strong
Feller property.

3 The generator of a killed Feller process

Let Xt be a doubly Feller process in Rd and let Ω ⊂ Rd be a regular bounded domain. We
denote by C0(Ω) the set of continuous real-valued functions on Ω that tend to zero as x ∈
Ω approaches the boundary. It follows from [2] that PΩ

t f (x) := Ex[ f (XΩ
t )] defines a Feller

semigroup on C0(Ω). Let LΩ be the infinitesimal generator of PΩ
t .

Theorem 1. The domain of LΩ is given by

D(LΩ) ={ f ∈ C0(Ω) : L] f ∈ C0(Ω)}, (3)

where L] f denotes the pointwise limit in (1) applied to the zero extension of C0(Ω). Also LΩ f (x) =
L] f (x) for all x ∈ Ω, and the convergence to L] f holds uniformly on compact subsets of Ω.

Next we show that functions in D(LΩ) can be characterized as functions in C0(Ω) that are
locally in the domain of L. This will be used for explicitly computing the generator LΩ.

Theorem 2. We have

D(LΩ) = { f ∈ C0(Ω) : ∃g ∈ C0(Ω), ( fn) ⊂ D(L) we have fn → f in C0(R
d)

and L fn → g uniformly on compact subsets of Ω},
(4)

and for f , g as in (4) we have LΩ f = g.

Finally, we show that we can evaluate the generator LΩ f (x) of the killed Feller process point-
wise for x ∈ Ω using the explicit formula (2) for L f (x). Let C2

0(Ω) denote the set of C0(Ω)
functions with first and second order partial derivatives that are continuous at every x ∈ Ω.

Theorem 3. Suppose that C2
0(R

d) is a core of L, so that L f (x) = PDO[ f ](x) for every x ∈ Rd and
f ∈ C2

0(R
d). Then:

• For every f ∈ D(LΩ) there exists fn ∈ C2
0(Ω) such that fn → f uniformly and PDO[ fn]

converges uniformly on compact subsets of Ω to LΩ f .

• If fn ∈ C2
0(Ω) is such that fn → f ∈ C0(Ω) uniformly and PDO[ fn] → g ∈ C0(Ω) converges

uniformly on compact subsets of Ω, then f ∈ D(LΩ) and LΩ f = g.

In particular, if f ∈ C2
0(Ω) and PDO[ f ] ∈ C0(Ω), then f ∈ D(LΩ) and LΩ f (x) = PDO[ f ](x)

for every x ∈ Ω.

4 Fractional derivatives

The positive and negative Riemann-Liouville fractional derivatives are defined by

Dα
[L,x] f (x) =

1
Γ(n− α)

dn

dxn

∫ x

L
f (y)(x− y)n−α−1dy,

Dα
[x,R] f (x) =

(−1)n

Γ(n− α)

dn

dxn

∫ R

x
f (y)(y− x)n−α−1dy

for any non-integer α > 0 and any−∞ ≤ L < x < R ≤ ∞, where n− 1 < α < n. The positive
and negative Caputo fractional derivatives are defined by

∂α
[L,x] f (x) =

1
Γ(n− α)

∫ x

L
f (n)(y)(x− y)n−α−1dy,

∂α
[x,R] f (x) =

(−1)n

Γ(n− α)

∫ R

x
f (n)(y)(y− x)n−α−1dy.

If 0 < β < 1, then it follows by the uniqueness of the Laplace transform that

∂
β
[0,t] f (t) = D

β
[0,t] f (t)−

t−β

Γ(1− β)
f (0). (5)

Using Theorem 3 we can compute the generator of a killed stable process Xt on an interval in
terms of fractional derivatives.

Theorem 4. Let Xt be any stable Lévy process with index 1 < α < 2 and let Ω = (L, R). Then for
all x ∈ Ω and any f ∈ C2

0(Ω) such that PDO[ f ] ∈ C0(Ω) we have

LΩ f (x) = −a f ′(x) + b Dα
[L,x] f (x) + c Dα

[x,R] f (x).

5 Applications to fractional Cauchy problems

Let gβ(u) denote the probability density function of the standard stable subordinator, with
the Laplace transform ∫ ∞

0
e−sugβ(u)du = e−sβ

for some 0 < β < 1. Suppose that Dt is a Lévy process such that gβ(u) is the probability
density of D1, and define the inverse stable subordinator (first passage time)

Et = inf{u > 0 : Du > t}.

Then [1] implies that the function

v(x, t) :=
∫ ∞

0
gβ(r)PΩ

(t/r)β f (x) dr

is the unique solution to the time-fractional Cauchy problem

D
β
t v(x, t) = LΩv(x, t) +

t−β

Γ(1− β)
f (0); v(x, 0) = f (x)

for any f ∈ D(LΩ). Using (5), it follows that the same function also solves

∂
β
t v = LΩv; v(0) = f

for any f ∈ D(LΩ). Since

h(w, t) =
t
β

w−1−1/βgβ(tw
−1/β)

is the probability density function of the inverse stable subordinator Et, it follows by a simple
change of variables that

v(x, t) =
∫ ∞

0
h(w, t)PΩ

w f (x) dw =
∫ ∞

0
u(x, w)h(w, t) dw = Ex[ f (XΩ

Et
)].

Example. Let Xt be any stable Lévy process with index 1 < α < 2 and let Ω = (L, R). By
Theorem 3 and Theorem 4, LΩ is the unique closed extension of −a∂x + b Dα

[L,x] + c Dα
[x,R].

Then the function u(x, t) = Ex[ f (Xt)I{τΩ < t}] is the unique solution to the space-fractional
Dirichlet problem

∂tu(x, t) = −a∂xu(x, t) + b Dα
[L,x]u(x, t) + c Dα

[x,R]u(x, t) ∀ x ∈ Ω, t > 0

u(x, 0) = f (x) ∀ x ∈ Ω;
u(x, t) = 0 ∀ x /∈ Ω, t ≥ 0

(6)

for any f ∈ D(LΩ), and the unique mild solution to (6) for any f ∈ C0(Ω). Also, for any
0 < β < 1 the function v(x, t) = Ex[ f (XΩ

Et
)] is the unique solution to the space-time fractional

Dirichlet problem

∂
β
t v(x, t) = −a∂xv(x, t) + b Dα

[L,x]v(x, t) + c Dα
[x,R]v(x, t) ∀ x ∈ Ω, t > 0

v(x, 0) = f (x) ∀ x ∈ Ω;
v(x, t) = 0 ∀ x /∈ Ω, t ≥ 0

(7)

for any f ∈ D(LΩ), and the unique mild solution to (7) for any f ∈ C0(Ω).
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