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Classical zero-drift random walks

1. Symmetric simple random walk on Zd

• Xn ∈ Zd , X0 = 0.
• Given X0, . . . ,Xn, new location Xn+1 is uniformly distributed

on the 2d adjacent lattice sites to Xn.

Theorem (Pólya 1921)
SRW is recurrent if d = 1 or d = 2, but transient if d ≥ 3.

1
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Classical zero-drift random walks

2. Pearson–Rayleigh random walk in Rd

• Xn ∈ Rd , X0 = 0.
• Given X0, . . . ,Xn, new location Xn+1 is uniformly distributed

on the unit circle/sphere centred at Xn.

uniform
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Recurrence/transience of homogeneous random walks
Let (Xn) be a spatially homogeneous random walk in Rd .
So Xn+1 depends only on Xn, but ∆ := Xn+1 − Xn is
independent of Xn (and n).
Let µ = E∆, the mean drift vector of the random walk.

Theorem (Chung–Fuchs)
Under mild conditions, if µ = 0 ∈ Rd , then (Xn) is
• recurrent if d = 1 or d = 2;
• transient if d ≥ 3.

This result applies both to the symmetric simple RW and the
Pearson–Rayleigh RW.

Definition

• recurrence: P[return to (nbrhood of) origin] = 1.
• transience: P[return to (nbrhood of) origin] < 1.
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Scaling limit for homogeneous random walks
Under mild non-degeneracy conditions (non-singularity of
E[∆∆>]), we have (up to a linear transformation):

Theorem (Donsker)
Spatially homogeneous random walk in Rd with zero drift
converges to d-dimensional Brownian motion after
diffusive scaling:(

Xbntc√
n

)
t∈[0,1]

=⇒ (bt )t∈[0,1] .

Brownian motion on Rd (d ≥ 2) possesses a skew-product
representation.

Let rt := ‖bt‖, θt :=
bt

‖bt‖
. Then,

• rt is a Bessel process on R+ of ‘dimension’ (parameter) d ;
• θt is a (stochastic) time-change of an independent

Brownian motion on the sphere.
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Non-homogeneous random walks
What if we allow ∆ = Xn+1 − Xn, the jump distribution, to
depend on the current location?
Then µ(x) := Ex ∆ := E[∆ | Xn = x ] becomes a function of the
current position x ∈ Rd .

Question
Is zero drift, i.e., µ(x) = 0 for all x ∈ Rd , enough to determine
recurrence/transience?

Answer
For d = 1: yes (essentially) — zero drift implies recurrence.
For higher dimensions: no — either behaviour is possible.

Theorem
There exist non-homogeneous random walks with
µ(x) = 0 for all x ∈ Rd that are
• transient in d = 2;
• recurrent in d ≥ 3.
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Elliptical random walk (in R2)

We modify the Pearson–Rayleigh random walk to make jumps
distributed on an ellipse.

The ellipse has fixed size, but orientation depends on current
position of the walk.

Fix constants a and b:

O

Xn

supp(Xn+1)
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Elliptical random walk (in R2)

We modify the Pearson–Rayleigh random walk to make jumps
distributed on an ellipse.

The ellipse has fixed size, but orientation depends on current
position of the walk.
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Elliptical random walk

a > b

radial bias

a < b

transverse bias



Elliptical random walk (d ≥ 2)

Suppose Xn = x ∈ Rd . Write x̂ for unit vector in direction x .

u
Du

∆ = Q(x̂)Du
x

O• u uniform on Sd−1

• D = diag(a,b, . . . ,b)

• Q(x̂) orthogonal matrix, with Q(x̂)e1 = x̂ .



Moments of ∆

Notation: write Ex [ · ] for E[ · | Xn = x ] and write ∆x for the
component of ∆ in direction x :

∆x = ∆ · x̂ =
∆ · x
‖x‖

.

Symmetry of sphere: if u is uniform on Sd−1 then E[u] = 0 and
E[uu>] = 1

d I.
Therefore, by construction,

Ex [∆] = 0, Ex [∆∆>] =
1
d

Q(x̂)D2Q>(x̂).

Hence,

Ex [∆x ] = 0, Ex [∆2
x ] =

a2

d
, Ex [‖∆‖2] =

a2 + (d − 1)b2

d
.
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Radial component of Xn

We analyse (Xn) by considering Rn := ‖Xn‖.

By symmetry, Rn is also Markov (Rn is a non-homogeneous
random walk on R+).

Moreover, it has asymptotically zero drift:

E[Rn+1 − Rn | Rn = r ] ∼ c/r ,

where positive constant c depends on model parameters and
ambient dimension.

Xn
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Lamperti’s classification

Define µk (r) := E[(Rn+1 − Rn)k | Rn = r ].

In the early 1960s, John Lamperti studied in detail how the
asymptotics of a stochastic process on R+ are determined by
the first two moment functions of its increments, µ1 and µ2.

Theorem (Lamperti, 1960)
Let (Rn) be a Markov chain on R+. Under mild conditions:
• If 2rµ1(r)− µ2(r) > 0 for all large enough r , then Rn is

transient,
• If 2rµ1(r)− µ2(r) < 0 for all large enough r , then Rn is

recurrent.



Recurrence/transience of elliptical random walk
Given Xn = x ,

Rn+1 − Rn = ‖x + ∆‖ − ‖x‖
= [. . . expand using Taylor’s theorem . . . ]

= ∆x +
‖∆‖2 −∆2

x
2‖x‖

+ O(‖x‖−2).

So,

µ1(r) =
(d − 1)b2

d
1
2r

+ O(r−2), µ2(r) =
a2

d
+ O(r−1).

Theorem
Let (Xn) be an elliptical random walk in Rd , with parameters a
and b.
• If (d − 1)b2 − a2 > 0 then (Xn) is transient.
• If (d − 1)b2 − a2 < 0 then (Xn) is recurrent.
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Diffusion limits
Back to homogeneous case:

Theorem (Donsker)
The Pearson–Rayleigh walk in Rd (the case a ≡ b = 1)
converges to d-dimensional Brownian motion:(

Xbntc√
n

)
t∈[0,1]

=⇒ (bt )t∈[0,1] .

Now, more generally:

Theorem
If (Xn) is an elliptical random walk in Rd , then there
exists a continuous strong Markov process (a diffusion)
(Xt ) on Rd , whose law depends on the parameters a and
b, such that, (

Xbntc√
n

)
t∈[0,1]

=⇒ (Xt )t∈[0,1].
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Brownian motion and Bessel processes
Brownian motion on Rd (d ≥ 2) possesses a skew-product
representation.

Let rt := ‖bt‖, θt :=
bt

‖bt‖
. Then,

• rt is a Bessel process on R+ of ‘dimension’ (parameter) d ;
• θt is a (stochastic) time-change of an independent

Brownian motion on the sphere.

• A Bessel process with ‘dimension’ δ, BES(δ), is a
Markov process βt on R+ satisfying the SDE

dβt =
δ − 1
2βt

1{βt 6=0}dt + dWt ,

where Wt is BM on R.
• 0 ∈ R+ is recurrent for BES(δ) if 1 ≤ δ < 2 and

transient if δ ≥ 2.



Brownian motion and Bessel processes
Brownian motion on Rd (d ≥ 2) possesses a skew-product
representation.

Let rt := ‖bt‖, θt :=
bt

‖bt‖
. Then,

• rt is a Bessel process on R+ of ‘dimension’ (parameter) d ;
• θt is a (stochastic) time-change of an independent

Brownian motion on the sphere.

• Define the additive functional ρ(t) :=
∫ t

0 r−2
s ds.

• Then θt = ϕρ(t), where ϕt is BM on Sd−1

independent of rt .
• That is, ϕt solves the SDE

dϕt = −d − 1
2

ϕtdt + (I − ϕtϕ
>
t )dWt ,

where Wt is BM on Rd .



Diffusion limit of elliptical random walk

Theorem
If (Xn) is an elliptical random walk in Rd , then there
exists a continuous strong Markov process (a diffusion)
(Xt ) on Rd , whose law depends on the parameters a and
b, such that, (

Xbntc√
n

)
=⇒ (Xt ).

We can describe (Xt ) via a structure reminiscent of the
skew-product decomposition for d-dimensional Brownian
motion.
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skew-product decomposition for d-dimensional Brownian
motion.

Let rt := ‖Xt‖, θt :=
Xt

‖Xt‖
. Now,

• rt is a BES(δ), where δ = 1 + (d − 1)b2/a2;

• Each excursion of rt is accompanied by a path of θt ∈ Sd−1.
• θt is a time-change of a two-sided BM (ϕt )t∈R on Sd−1,

independent of rt .
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General setting for invariance principle
• Moments condition: supx Ex [‖∆‖4] <∞.
• Zero drift: µ(x) := Ex ∆ = 0.

The covariance matrix function of the increments we call
M(x) := Ex [∆∆>].

• Asymptotic isotropy: M(x)→ σ2(x̂) as ‖x‖ → ∞ for a
positive-definite matrix valued C∞-function σ2 on Sd−1.

Define for each u ∈ Sd−1 an inner product 〈 · , · 〉u on Rd via

〈y , z〉u := y> · σ2(u) · z = 〈y , σ2(u) · z〉, (for y , z ∈ Rd ).

• Limiting covariance regularity: There exist constants
U,V , δ > 0 such that, for all u, v ∈ Sd−1,

〈u,u〉u = U, trσ2(u) = V , and 〈v , v〉u ≥ δ.

• Limiting radial structure: u ∈ Sd−1 is eigenvector of σ2(u).
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General setting for invariance principle

Theorem
If (Xn) is a random walk in Rd of the above type, then
there exists a continuous strong Markov process (a
diffusion) (Xt ) on Rd such that,(

Xbntc√
n

)
t∈[0,1]

=⇒ (Xt )t∈[0,1].

The diffusion (Xt ) is the unique weak solution of the SDE

dXt = σ(X̂t )dWt , X0 = 0,
where W is BM on Rd and σ any square-root of σ2.

Typically x 7→ σ(x̂) has a discontinuity at 0 ∈ Rd and (Xt ) keeps
visiting 0, so standard methods from (Ethier & Kurtz, 1986)
need to be extended (key fact: Bessel local time at 0 vanishes).
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General setting for invariance principle

Theorem
The martingale problem

dXt = σ(X̂t )dWt , for any deterministic X0 ∈ Rd ,

is well-posed for any square-root σ of the asymptotic
covariance structure σ2.

Typically, x 7→ σ(x̂) has a discontinuity at 0 ∈ Rd and (Xt )
keeps visiting 0, so standard methods cannot be applied.

• (Krylov, 1980): smoothing of coefficients yields weak
existence (because σ is bounded).

• Excursion theory for (Xt ) has to be developed for
uniqueness in law (works for any square-root σ).

• Strong existence and pathwise uniqueness may fail even
for smooth σ (depends on the choice of square-root).
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• Excursion theory for (Xt ) has to be developed for
uniqueness in law (works for any square-root σ).

• Strong existence and pathwise uniqueness may fail even
for smooth σ (depends on the choice of square-root).
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General setting: the excursion skew-decomposition
Let (ξt , t ≥ 0) be BM on Rd . Then SDE

dψt = (σ(ψt )− ψtψ
>
t )dξt −

V − 1
2

ψtdt , ψ0 ∈ Sd−1, (1)

has a path-wise unique solution such that ψt ∈ Sd−1 ∀t ≥ 0.

Theorem

(a) Radial component. The process r , defined by
rt = ‖Xt‖, is BES(U/V ) started at 0.

(b) Skew-product structure. Let s > 0 and
τs := inf{t ≥ s : rt = 0}. Then for any t ∈ [s, τs),

X̂t = ϕρs(t), where ρs(t) =

∫ t

s
r−2
u du,

processes ϕ and r are independent and ϕ follows
SDE (1) started according its stationary measure µ.
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Properties of X
Scaling: X and Y = (c−1/2Xct ), c > 0, have the same law:
dYt = c−1/2dXct = c−1/2σ(X̂ct )dWct = σ(Ŷt )d(c−1/2Wct )

Rapid spinning: Let s > 0 and τ−s = sup{t < s : rt = 0}. For
any t ∈ (τ−s , τs) in excursion interval, it holds

lim
s↓τ−s

ρs(t) =∞, where ρs(t) =

∫ t

s
r−2
u du. (2)

Rapid spinning implies that X̂t = ϕρs(t) is distributed according
to the stationary measure µ of SDE (1).

Applied to extensions of strong Makrov processes: (Itô &
McKean, 1974), (Erickson, 1990), (Vuolle-Apiala, 1992)

Proof of (2): (Pitman & Yor, 1982) BES(U/V ) excursion (recall
δ = U/V ∈ (1,2)): pick maximum according to σ-finite measure
m3−δdm and run back-to-back two independent BES(4− δ)
from 0 it hits m. Apply (M & Urusov, 2012).
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Stationary law µ of dψt = (σ(ψt)− ψtψ
>
t )dξt − V−1

2 ψtdt

Let (Sd−1,g) be a Riemannian manifold with metric g induced
by σ−2. Then ψ is diffusion on Sd−1 with generator

G = (1/2)∆g + b,

where ∆g is the Laplace–Beltrami operator on (Sd−1,g) and
vector field b is explicit in σ2 and the metric g. Here,

∆g =
1√

det g
∂

∂xi

(√
det g g ij ∂

∂xj

)
,

where g = (g ij)−1 and g ij(x) = σ2
ij (x)− xixj , i , j = 1, . . . ,d − 1,

and the drift b is

b =
1
2

(
(d − V )xi −

∂σ2
ij

∂xj
+

1
2

g ikgj`
∂σ2

j`

∂xk

)
∂

∂xi
.
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Stationary law µ of dψt = (σ(ψt)− ψtψ
>
t )dξt − V−1

2 ψtdt
∃! invariant measure µ on Sd−1, such that µ(dx) = ν(x)dx .
Density ν, wrt the volume element dx =

√
det(g)dx1 . . . dxd−1

on (Sd−1,g) satisfies

∆gν = 2div(νb).

For any initial distribution µ0 on Sd−1,

P[ψt ∈ A|ψ0 ∼ µ0]→ µ(A) as t →∞.

The dual (or time-reversal) on Sd−1 of ψ is generated by

G′ =
1
2

∆g − b + grad(log ν).

If b = gradF , then

• G = G′, and
• we have explicit formula for the density ν = exp(2F ).

Hence excursion representation for BES(U/V ) (in R+) from
(Pitman & Yor, 1982) extends to X (in Rd ).
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Some remarks
Walsh’s Brownian motions: degenerate case U = V is
excluded from our results. But for U very close to V the
measure on Sd from Walsh’s construction is our stationary
measure angular measure µ of ψ. Heuristically this
approximates Walsh’s Brownian motion (recall simulation).

Pathwise uniqueness and strong solutions of

dXt = σ(X̂t )dWt , X0 = 0,

Since the solution is unique in law, the dichotomy is

(i) pathwise uniqueness holds (implying strong uniqueness);
(ii) pathwise uniqueness fails and the SDE has multiple

solutions, none of which are strong.

Which of (i) or (ii) occurs does depend on the choice of
square-root σ (e.g. multidimensional Tanaka SDE).
∃smooth σ under (ii) (including “complex Brownian motion”
(Stroock & Yor, 1981). We have examples for d = 2,4,8.
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Marginal limit theorem
At time t = 1, the law of X1 is given by
• ‖X1‖2 ∼ Γ(1

2 + (d − 1) b2

2a2 ,2a2) (Gamma);
• X̂1 ∼ U(Sd−1) (uniform);
• ‖X1‖ and X̂1 are independent.

(When a = b then ‖X1‖2 is a scalar multiple of a χ2 random
variable with d degrees of freedom.)

So for example we get an angular ergodic result for the random
walk: for measurable A ⊆ Sd−1 ,

lim
n→∞

1
n

n−1∑
k=0

1{X̂k ∈ A} =
|A|
|Sd−1|

, in L1.

Almost-sure version unlikely to hold as the limit is
non-degenerate∫ 1

0
1{X̂t ∈ A}dt = lim

ε↓0

∫ 1

ε
1{X̂t ∈ A}dt .
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