ulm university universität **UUU**

On exponential functionals of Lévy processes

A. Lindner | joint work with A. Behme and M. Maejima |

Lévy 2016, Angers, July 25 - July 29

The Ornstein–Uhlenbeck process

•
$$\eta = (\eta_t)_{t \ge 0}$$
 Lévy process, $\lambda > 0$.

▶ Solution $V = (V_t)_{t \ge 0}$ to Langevin equation

$$dV_t = -\lambda V_t \, dt + d\eta_t,$$

i.e.

Page 2

$$V_t = V_0 - \int_0^t \lambda V_s \, ds + \eta_t, \quad t \ge 0,$$

for some V_0 , is called an Ornstein–Uhlenbeck process (driven by η).

Solution well known to be

$$V_t = e^{-\lambda t} \left(V_0 + \int_0^t e^{\lambda s} d\eta_s
ight), \quad t \ge 0$$

Theorem (Wolfe 1982, Sato and Yamazato 1984)

(a) The following are equivalent:

Page 3

1. A starting random variable V_0 can be chosen such that $(V_t)_{t\geq 0}$ is strictly stationary, i.e. such that

$$(V_{t_1},\ldots,V_{t_n})\stackrel{d}{=} (V_{t_1+h},\ldots,V_{t_n+h}) \quad \forall t_1,\ldots,t_n,h \geq 0.$$

- 2. The integral $\int_0^t e^{-\lambda s} d\eta_s$ converges almost surely to a finite random variable as $t \to \infty$.
- 3. $E \log^+ |\eta_1| < \infty$ (here, $\log^+(x) = \log(\max\{x, 1\})$.

(b) In that case, the stationary (marginal) distribution is unique and given by $\int_0^\infty e^{-\lambda t} d\eta_t$.

(c) Further, $\int_0^\infty e^{-\lambda t} d\eta_t$ is self-decomposable, and when varying η over all Lévy processes with finite log-moment, all self-decomposable distributions are obtained in this way.

Recall: A distribution $\mu = \mathcal{L}(X)$ is self-decomposable, if for each $c \in (0, 1)$ there exists a random variable Y_c , independent of *X*, such that

$$cX + Y_c \stackrel{d}{=} X.$$

Each self-decomposable distribution is infinitely divisible, and the class of all self-decomposable distributions is denoted by $L(\mathbb{R})$.

The previous theorem implies that

Page 4

$$\Phi: \{\mathcal{L}(\eta_1) ext{ inf. div. with } E \log^+ |\eta_1| < \infty\} o L(\mathbb{R}),$$

$$\mathcal{L}(\eta_1) \mapsto \Phi(\mathcal{L}(\eta_1)) := \mathcal{L}\left(\int_0^\infty e^{-\lambda t} d\eta_t\right),$$

is a bijection. [It is even an algebraic isomorphism, i.e. additionally respects convolution, see Jurek and Mason 1993].

Generalised Ornstein–Uhlenbeck process

Page 5

- $(\xi, \eta) = (\xi_t, \eta_t)_{t \ge 0}$ bivariate Lévy process
- For each starting random variable V_0 , the process $V = (V_t)_{t>0}$ defined by

$$V_t = \boldsymbol{e}^{-\xi_t} (V_0 + \int_0^t \boldsymbol{e}^{\xi_{s-}} \, d\eta_s)$$

is called a generalised Ornstein–Uhlenbeck (GOU) process.

- Introduced by de Haan and Karandikar (1989) as natural continuous time analogue of random recurrence equations, then investigated in more detail by Carmona, Petit and Yor (1997) and others.
- Throughout this talk assume that ξ_t → ∞ a.s. as t → ∞ and that ξ and η are independent!

Theorem

1. A random variable V_0 can be chosen such that $(V_t)_{t\geq 0}$ is strictly stationary if and only if

$$V_{\infty} := \int_0^\infty e^{-\xi_{s-}} d\eta_s = \lim_{t \to \infty} \int_0^t e^{-\xi_{s-}} d\eta_s$$

converges almost surely. Then $\mathcal{L}(V_{\infty}) = \mathcal{L}(V_0)$ is the strictly stationary marginal distribution. (Carmona, Petit, Yor 1997, L. and Maller 2005). We call V_{∞} the exponential functional of (ξ, η) .

2. Erickson and Maller (2005) characterise in terms of the Lévy triplet of (ξ, η) when $\int_0^\infty e^{-\xi_{s-}} d\eta_s$ converges almost surely. In particular, if $E\xi_1$ exists (then in $(0, \infty)$), then convergence if and only if $E\log^+ |\eta_1| < \infty$.

3. $(V_t)_{t\geq 0}$ is the unique solution of the SDE

$$dV_t = V_{t-} dU_t + d\eta_t, \quad t \ge 0,$$

where U a Lévy process such that

 $\mathcal{E}(U)_t = e^{-\xi_t}$ (stochastic exponential),

i.e.

Page 7

$$U_t = -\xi_t + \sum_{0 < s \le t} \left(e^{-\Delta\xi_s} - 1 + \Delta\xi_s \right) + t\sigma_{\xi}^2/2, \quad t \ge 0$$

(by inverting the Doleans-Dade formula). The Lévy measure ν_U of U satisfies

$$\nu_U((-\infty,-1])=0$$

(e.g. Behme, L. and Maller, 2011).

Remark

- ► To determine the distribution of ∫₀[∞] e^{-ξ_s-} dη_s and properties of it has attracted a lot of attention, in particular that of ∫₀[∞] e^{-ξ_s-} ds, e.g. Bertoin, Carmona, Chaumont, Dufresne, Gjessing, Kuznetsov, Pardo, Patie, Paulsen, Petit, Rivero, Savov, Yor and others.
- However, the explicit distribution is known only in a few special cases.

Setting and questions:

Page 9

 $\xi = (\xi_t)_{t \ge 0}$ a Lévy process with $\xi_t \to \infty$ a.s. $(t \to \infty)$. Denote

 $D_{\xi} := \left\{ \mathcal{L}(\eta_1) : (\eta_t)_{t \ge 0} \text{ 1-dim. LP, indep. of } \xi \text{ s.t. } \int_0^\infty e^{-\xi_{s-}} d\eta_s \text{ conv. a.s.}
ight\}$

$$egin{array}{rcl} \Phi_{\xi}: D_{\xi} &
ightarrow & ext{set of probability distributions}, \ \mathcal{L}(\eta_1) & \mapsto & \mathcal{L}\left(\int_0^\infty e^{-\xi_{s-}} \, d\eta_s
ight), \end{array}$$

$$R_{\xi} := \Phi_{\xi}(D_{\xi}) = \operatorname{Range}(\Phi_{\xi})$$

Questions:

- 1. Is Φ_{ξ} injective?
- 2. Is R_{ξ} closed?
- 3. Is Φ_{ξ} or its inverse (if existent) continuous?
- 4. Characterize R_{ξ} .

For injectivity derive equation for characteristic function via the generator of the GOU process.

Proposition:

- 1. The GOU process is a Feller process.
- 2. $C^2_c(\mathbb{R}), C^\infty_c(\mathbb{R})$ and

$$\{f \in C_0^2(\mathbb{R}) : \lim_{|x| \to \infty} \left(xf'(x) |+ |x^2 f''(x)| \right) = 0\}$$

are cores.

3. The generator of *V* can be expressed explicitly in terms of the characteristic triplets of η and ξ .

(Behme and L. 2013; for 3. also Carmona, Petit and Yor (1997), Kuznetsov, Pardo and Savov (2012) and others).

Theorem (Behme and L., 2015)

• $(\gamma_{\xi}, \sigma_{\xi}^2, \nu_{\xi})$ characteristic triplet of ξ

►
$$\mathcal{L}(\eta_1) \in D_{\xi}, \mu := \mathcal{L}(V_{\infty}) = \mathcal{L}\left(\int_0^{\infty} e^{-\xi_{s-}} d\eta_s\right)$$

- $u \mapsto \Psi_{\eta}(u)$ the characteristic exponent of η (i.e. $e^{\Psi_{\eta}(u)} = Ee^{iu\eta_1}$)
- ▶ Let $h \in C_c^{\infty}(\mathbb{R})$ with h(x) = 1 for $|x| \le 1$ and h(x) = 0 for $|x| \ge 2$
- For $n \in \mathbb{N}$ and $u \in \mathbb{R}$ define

$$f_{n,u}(x) := e^{iux}h\left(\frac{x}{n}\right).$$

▶ Then

$$\Psi_{\eta}(u)\,\widehat{\mu}(u)$$

$$= \lim_{n \to \infty} \left[\gamma_{\xi} \int_{\mathbb{R}} x f_{n,u}'(x)\,\mu(dx) - \frac{\sigma_{\xi}^2}{2} \int_{\mathbb{R}} \left(x^2 f_{n,u}''(x) + x f_{u,n}'(x) \right)\,\mu(dx) - \int_{\mathbb{R}} \int_{\mathbb{R}} \left(f_{n,u}(xe^{-y}) - f_{n,u}(x) + xy f_{n,u}'(x) \mathbf{1}_{|y| \le 1} \right) \nu_{\xi}(dy)\,\mu(dx) \right]$$

• If additionally
$$EV_{\infty}^2 = \int_{\mathbb{R}} x^2 \mu(dx) < \infty$$
, then

$$\begin{split} \Psi_{\eta}(u)\widehat{\mu}(u) &= \gamma_{\xi} \, u \, \widehat{\mu}'(u) - \frac{\sigma_{\xi}^{2}}{2} \left(u^{2}\widehat{\mu}''(u) + u \, \widehat{\mu}'(u) \right) \\ &- \int_{\mathbb{R}} \left(\widehat{\mu}(u e^{-y}) - \widehat{\mu}(u) + u y \, \widehat{\mu}'(u) \mathbf{1}_{|y| \leq 1} \right) \nu_{\xi}(dy) \end{split}$$

► Observe that right-hand sides completely determined by µ = L(V_∞) and L(ξ₁). $\Psi_{\eta}(u)\widehat{\mu}(u) =$ known function of $\widehat{\mu}$ and $\mathcal{L}(\xi_1)$

Hence when $\hat{\mu}(u) \neq 0$ for u from a dense subset of \mathbb{R} , or if $\mathcal{L}(\eta_1)$ is already determined by its characteristic function $u \mapsto e^{\Psi_{\eta}(u)}$ in small neighbourhoods of zero, then Ψ_{η} and hence $\mathcal{L}(\eta_1)$ can be recovered from $\hat{\mu}$ and $\mathcal{L}(\xi_1)$.

Remark:

►

- This can be used to derive sufficient conditions for injectivity.
- When η is a subordinator, a similar equation can be derived using Laplace transforms.

Theorem (Behme, L., 2015):

- 1. If ξ is spectrally negative, or if $\xi = qN$ for some q > 0 and a Poisson process *N*, then $\mu = \mathcal{L}(\int_0^\infty e^{-\xi_{s-}} d\eta_s)$ is self-decomposable (due to Samorodnitsky) resp. infinitely divisible, hence $\hat{\mu}(u) \neq 0$ for all *u*, hence Φ_{ξ} is injective.
- 2. If η is symmetric, then $\hat{\mu}(u) > 0$ for all $u \in \mathbb{R}$, hence $\mathcal{L}(\eta_1)$ is determined by μ and $\mathcal{L}(\xi_1)$.
- 3. If ν_{η} has some one-sided exponential moment, i.e. if

$$\int_1^\infty e^{\varepsilon x}\,\nu_\eta(dx)<\infty \ \, \text{or} \ \, \int_{-\infty}^{-1} e^{-\epsilon x}\,\nu_\eta(dx)<\infty \quad \text{for some } \varepsilon>0,$$

then $\mathcal{L}(\eta_1)$ is determined by its values in small neighbourhoods of 0, hence $\mathcal{L}(\eta_1)$ is determined by μ and $\mathcal{L}(\xi_1)$.

Remark:

Similarly, it is possible to express

 $\Psi_{-\xi}(u) \operatorname{\textit{Ee}}^{iu\log|V_{\infty}|}$

as a function of $\mu = \mathcal{L}(\int_0^\infty e^{-\xi_{s-}} d\eta_s)$ and $\mathcal{L}(\eta_1)$.

In particular, when

$$Ee^{-\varepsilon \log |V_{\infty}|} = E|V_{\infty}|^{-\varepsilon} < \infty \quad \text{for some } \varepsilon > 0,$$

then $\mathcal{L}(\xi_1)$ is determined by μ and $\mathcal{L}(\eta_1)$. This is the case for example when $\sigma_{\eta}^2 > 0$ (non-trivial Brownian motion part), or when η is a subordinator with strictly positive drift, giving injectivity of the mappping

$$\mathcal{L}(\eta_1)\mapsto \mathcal{L}\left(\int_0^\infty e^{-\xi_{s-}}\,d\eta_s
ight)$$

in these cases.

Recall that

$$\begin{split} \Psi_{\eta}(u)\widehat{\mu}(u) &= \gamma_{\xi} \, u \, \widehat{\mu}'(u) - \frac{\sigma_{\xi}^{2}}{2} \left(u^{2} \widehat{\mu}''(u) + u \, \widehat{\mu}'(u) \right) \\ &- \int_{\mathbb{R}} \left(\widehat{\mu}(u e^{-y}) - \widehat{\mu}(u) + u y \, \widehat{\mu}'(u) \mathbf{1}_{|y| \leq 1} \right) \, \nu_{\xi}(dy) \end{split}$$

when $EV_{\infty}^2 < \infty$. This can be used to characterise when N(0, 1) can be represented as $\mathcal{L}(\int_0^\infty e^{-\xi_{s-}} d\eta_s)$.

Theorem (Behme, L., 2015)

Let ξ , η be two independent Lévy process such that $V_{\infty} = \int_{0}^{\infty} e^{-\xi_{s-}} d\eta_s$ converges almost surely. Then $\mathcal{L}(V_{\infty}) = N(0, 1)$ if and only if $\xi_t = \gamma_{\xi} t$ and $\eta_t = (2\gamma_{\xi})^{1/2} W_t$, where $(W_t)_{t\geq 0}$ is a standard Brownian motion.

Continuity and closedness

It can be shown that $\Phi_{\xi} : \mathcal{L}(\eta_1) \mapsto \mathcal{L}(\int_0^{\infty} e^{-\xi_{s-}} d\eta_s \text{ is not}$ continuous with respect to weak convergence (even when $\xi_t = t$). However:

Theorem (Behme, L., Maejima, 2016+)

- $R_{\xi} = \Phi_{\xi}(D_{\xi})$ is closed under weak convergence.
- If Φ_ξ is injective, then Φ_ξ⁻¹ is continuous with respect to weak convergence.
- If Φ⁺_ξ denotes Φ_ξ restricted to all non-negative laws L(η₁) ∈ D_ξ, then Φ⁺_ξ is injective and (Φ⁺_ξ)⁻¹ is continuous.
- *R*_ξ is in general not closed under convolution.

Proof:

• Uses that Φ_{ξ} is closed mapping in the sense that if

$$\mathcal{L}(\eta_1^{(n)}) \in D_{\xi}, \quad \eta_1^{(n)} \stackrel{d}{\to} \eta_1 \quad \text{and} \quad \Phi_{\xi}(\mathcal{L}(\eta_1^{(n)})) \stackrel{w}{\to} \mu$$

as $n \to \infty$, then

$$\mathcal{L}(\eta_1) \in D_{\xi}$$
 and $\Phi_{\xi}(\mathcal{L}(\eta_1)) = \mu$.

- Further, shows that (η₁⁽ⁿ⁾)_{n∈ℕ} is tight if (Φ_ξ(ℒ(η₁⁽ⁿ⁾))_{n∈ℕ} is tight.
- ► To show that it is in general not closed under convolution (e.g. if $Ee^{-2\xi_1} < 1$ and ξ not deterministic), use that there exists some symmetric $V = \int_0^\infty e^{-\xi_{s-}} d\eta_s \in R_{\xi}$ with finite variance. If R_{ξ} were closed under convolution, then by the central limit theorem and closedness of R_{ξ} , also N(0, 1)would be in R_{ξ} , a contradiction. \Box

Characterisation of positive distributions in the range Theorem (Behme, L., Maejima, 2016+)

Let ξ drift to $+\infty$ and $\mu = \mathcal{L}(V)$ be a probability distribution on $[0,\infty)$ with Laplace exponent ψ_V , i.e. $Ee^{-uV} = e^{\psi_V(u)}$, $u \ge 0$. Then the following are equivalent:

•
$$\mu \in R_{\xi}$$
.

▶ The function $g_\mu : (0,\infty) o \mathbb{R}$, defined by

$$egin{aligned} g_{\mu}(u) &:= & (\gamma_{\xi} - rac{\sigma_{\xi}^2}{2}) u \psi_{V}'(u) - rac{\sigma_{\xi}^2}{2} u^2 \left(\psi_{V}''(u) + (\psi_{V}'(u))^2
ight) \ & - \int_{\mathbb{R}} \left(e^{\psi_{V}(ue^{-y}) - \psi_{V}(u)} - 1 + u \psi_{V}'(u) y \mathbf{1}_{|Y| \leq 1}
ight) \,
u_{\xi}(dy), \end{aligned}$$

defines the Laplace exponent of some subordinator $\eta.$ In that case,

$$\Phi_{\xi}(\mathcal{L}(\eta_1)) = \mu.$$

Specialisation to $\xi_t = \sigma B_t + at$

Corollary (Positive stable distributions in the range)

- $\xi_t = \sigma B_t + at, \sigma, a > 0, B$ Standard BM
- μ a positive α-stable distribution with Lévy density
 x → cx^{-1-α} on (0,∞)
- ▶ Then $\mu \in R_{\xi}$ if and only the drift of μ is zero and $\alpha \in (\mathbf{0}, \frac{2a}{\sigma^2} \land \frac{1}{2}]$
- In that case, if α < 1/2, then μ = Φ_ξ(L(η₁)), where η is a subordinator with drift 0 and Lévy density on (0,∞) given by

$$x \mapsto c\alpha \left(a - \frac{\sigma^2}{2}\right) x^{-\alpha - 1} + \sigma^2 c^2 \frac{\alpha (\Gamma(1 - \alpha))^2}{\Gamma(1 - 2\alpha)} x^{-2\alpha - 1}$$

If α = 1/2 = 2a/σ², then μ = Φ_ξ(L(η₁)), where η is a deterministic subordinator with drift σ²c²((Γ(1 − α))²/2.

Corollary:

Let $\xi_t = \sigma B_t + at$, $\sigma, a > 0$.

- Then R_ξ contains the closure of all finite convolutions of positive α-stable distributions with drift 0 and α ∈ (0, ^{2a}/_{σ²} ∧ ¹/₂].
- If $\mu \ge 0$ is in R_{ξ} , then μ must have drift 0.

Corollary (Nested ranges)

Let $\xi^{(a,\sigma)} = \sigma B_t + at$ and consider $R^+_{\xi^{(a,\sigma)}}$, the set of positive distributions in $R_{\xi^{(a,\sigma)}}$. Then

$$\begin{array}{rcl} R^+_{\xi^{(a,\sigma)}} &=& R^+_{\xi^{(a/\sqrt{\sigma},1)}},\\ R^+_{\xi^{(a,\sigma)}} &\subset& R^+_{\xi^{(a',\sigma)}} \quad \text{for} \quad a' \geq a,\\ R^+_{\xi^{(a,\sigma)}} &\supset& R^+_{\xi^{(a,\sigma')}} \quad \text{for} \quad \sigma' \geq \sigma,\\ \bigcup_{a,\sigma>0} R^+_{\xi^{(a,\sigma)}} &\subsetneq& L(\mathbb{R}^+). \end{array}$$

Remark: Extensions of some of the above results to Lévy processes with jumps can be found in Behme (2015).

References

Talk based on:

- Behme, A. and Lindner, A. (2015) On exponential functionals of Lèvy processes. J. Theor. Probab. 28, 681–720.
- Behme, A., Lindner, A. and Maejima, M. (2016+) On the range of exponential functionals of Lévy processes. Séminarie de Probabilités, to appear.

Further literature:

- Behme, A. (2015) Exponential functionals of Lévy processes with jumps. ALEA 12, 375–397.
- ▶ Behme, A., Lindner, A. and Maller, R. (2011) Stationary solutions of the stochsatic differential equation $dV_t = V_{t-}dU_t + dL_t$ with Lévy noise. *Stoch. Process. Appl.* **121**, 91–108.

- Carmona, P., Petit, F. and Yor, M. (1997) On the distribution and asymptotic resluts for exponential functionals of Lévy processes. In M. Yor (ed.): Exponential Functionals and Principal Values Related to Brownian Motion. *Bibl. Rev. Mat. Iberoamercana, Rev. Mat. Iberoamericana*, Madrid, pp. 73–130.
- de Haan, L, and Karandikar, R.L. (1989) Embedding a stochastic difference equation into a continuous time process. *Stoch. Process. Appl.* **32**, 225–235.
- Erickson, K.B. and Maller, R.A. Generalised Ornstein–Uhlenbeck processes and the convergence of Lévy integrals. In: M. Emery, M. Ledoux, M. Yor (eds.) Séminaire de Probabilités XXXVIII, Lecture Notes in Math. 1857, pp. 70–94.
- Jurek, Z.J. and Mason, J.D. (1993) Operator-Limit Distributions in Probability, Wiley, New York.

- Kuznetsov, A., Pardo, J.C. and Savov, M. (2012) Distributional properties of exponential functionals of Lévy processes. *Electron. J. Probab.* 17, 1–35.
- Lindner, A. and Maller, R. (2005) Lévy integrals and the stationarity of generalised Ornstein–Uhlenbeck processes. *Stoch. Process. Appl.* **115**, 1701–1722.
- Sato, K. and Yamazato, M. (1984) Operator-selfdecomposable distributions as limit distributions of processes of Ornstein–Uhlenbeck type. *Stoch. Process. Appl.* **17**, 73–100.
- Wolfe, S.J. (1982) On a continuous analogue of the stochastic difference equation X_n = ρX_{n-1} + B_n. Stoch. Process. Appl. **12**, 301–312.