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A finite-activity model

p is picked from
P = {(p1, p2, . . . ) : p1 ≥ p2 ≥ · · · ,

∑
i≥1 pi ≤ 1}.

Mean measure:
〈µt , f 〉 =

∫
f (x)µt(dx) = E

[∑
u particle
alive at t

f (size(u))
]

ν(dp) = λK (dp)
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The pure fragmentation equation

∂t〈µt , f 〉 =

〈
µt ,
∫
P

{∑
i≥1

f (xpi )− f (x)
}
ν(dp)

〉
,

f ∈ C∞c (0,∞),

µ0 = δ1
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The growth-fragmentation equation

∂t〈µt , f 〉 =

〈
µt ,

axf ′(x)

+

∫
P

{∑
i≥1

f (xpi )− f (x)
}
ν(dp)

〉
,

a ∈ R
Require only

∫
(1− p1)2 ν(dp) <∞ (asymmetric children)
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Questions for today

Existence and representation
Explore many-to-one theorem
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Fragmentation processes (ν <∞)
Z(t) =

∑
u fragments

δlog(size(u))1{u alive at time t}

This is a compound Poisson process with immigration.
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Compensated fragmentation processes, ∫ (1− p1)2 ν(dp) <∞

We can build Z in general
Create a Lévy process whose Lévy measure is ν(log p1 ∈ ·)
At every jump of size z , sample from ν(dp | log p1 = z) and
immigrate new particles at relative positions log pi , i ≥ 2.

(Aside: let’s assume we have a consistent way to give the particles
labels u ∈ U . Write Zu(t) for the position of particle u at time t.)
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Solution of the equation

Define the cumulant κ: E
[∑

u eqZu(t)
]

= etκ(q). It satisfies

κ(q) = aq +

∫
P

{∑
i≥1

pq
i − 1 + (1− p1)q

}
ν(dp).

Theorem
Fix ω such that κ(ω) <∞.

κ(·+ ω)− κ(ω) is the Laplace exponent of a Lévy process;
call it ξ.
Let

〈µt , f 〉 = etκ(ω)E
[
e−ωξ(t)f

(
eξ(t))] = E

[∑
u

f
(
eZu(t))].

This is the unique solution of the growth-fragmentation
equation.
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A martingale for the fragmentation

Let
W (ω, t) = e−tκ(ω)

∑
u

eωZu(t), t ≥ 0.

The process W is the additive martingale.

It induces new measure Pω for Z: if Ft is measurable with
respect to paths up to time t,

Eω[Ft(Z)] = E[Ft(Z)W (ω, t)].
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Construction of a spine process, I

Let ξ be the Lévy process with Laplace exponent κ(ω + ·)− κ(ω).
Lévy measure: Π(dz) =

∑
i≥1 eωzν(log pi ∈ dz).

Jump process: M(ds, dz), a Poisson point process with
intensity measure ds Π(dz).
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Construction of a spine process, II
We will define a decoration of the jump process M:

gi (z) = eωzν(log pi∈dz)
Π(dz) , a Radon-Nikodym derivative

µ(s, z , di , dp) = gi (z)ζ(di)ν(dp | log pi = z),
where ζ is counting measure.
Let N(ds, dz , di , dp) be the µ-randomisation of M.
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Construction of a spine process, III
We construct a new process under Pω:

Let (Z [s,j])s≥0,j≥1 be a collection of independent compensated
fragmentations under P.

Define

Z̃(t) = δξ(t)+

∫
N(ds, dz , di , dp)

∑
j 6=i

[Z [s,j](t−s)+ξ(s−)+log pj ].
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Construction of a spine process, III
We construct a new process under Pω:

Let (Z [s,j])s≥0,j≥1 be a collection of independent compensated
fragmentations under P.
Define

Z̃(t) = δξ(t)+

∫
N(ds, dz , di , dp)

∑
j 6=i

[Z [s,j](t−s)+ξ(s−)+log pj ].

We distinguish within Z̃ the particle with position ξ: let Ut be
such that Z̃Ut (t) = ξ(t).
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Many-to-one theorem

Theorem
For Ft measurable with respect to paths up to time t, and u any
label,

Eω[Ft(Z̃)1{Ut =u}] = e−tκ(ω)E[Ft(Z)eωZu(t)].
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Many-to-one theorem

Theorem
For Ft measurable with respect to paths up to time t, and u any
label,

Eω[Ft(Z̃)1{Ut =u}] = e−tκ(ω)E[Ft(Z)eωZu(t)].

Corollary
Summing over u,

Eω[Ft(Z̃)] = e−tκ(ω)E[Ft(Z)W (ω, t)] = Eω[Ft(Z)].

That is, Z̃ d
= Z under Pω.
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Many-to-one theorem

Theorem
For Ft measurable with respect to paths up to time t, and u any
label,

Eω[Ft(Z̃)1{Ut =u}] = e−tκ(ω)E[Ft(Z)eωZu(t)].

Corollary
For Borel f ,

etκ(ω)Eω
[
e−ωZ̃Ut (t)f (Z̃Ut (t))

]
= E

[∑
u

f (Zu(t))
]
.
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Discussion of proof, I
We define truncation of the processes.
In the truncated process Z(b), a child particle is kept only if:

its displacement from the parent is less than −b, or
it is the largest child
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Discussion of proof, II

The truncation operation can be applied to:
Z, under P — let κ(b) be the cumulant of Z(b)

Z̃, under Pω
They are related by:

Lemma
Let

ζ = inf
{
t ≥ 0 : Ut not in Z̃(b)(t)

}
.

Then,

Eω
[
Ft(Z̃(b))1{Ut =u} | ζ > t

]
= e−tκ(b)(ω)E

[
Ft(Z(b))eωZ

(b)
u (t)]
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Further questions

Derivative martingale
∂W (ω, t) = e−tκ(ω)∑

u(ωZu(t)− tκ′(ω))eωZu(t)

KPP equation
‘Non-homogeneous’ fragmentations (self-similar done by
Bertoin–Budd–Curien–Kortchemski ’16)

J. Bertoin
Compensated fragmentation processes and limits of dilated
fragmentations

J. Bertoin, A. R. Watson
Probabilistic aspects of critical growth-fragmentation equations

A. R. Watson, Q. Shi
Tilting of compensated fragmentations [in preparation]
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Thank you!


