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What this talk is about

Let X (t), t ≥ 0 be a Lévy process, such that

P(X (1) > x) = L+(x)x−α, P(X (1) < −x) = L−(x)x−β.

Set
X̄n(t) = X (nt)/n, X̄n = {X̄n(t), t ∈ [0, 1]}.

Can we obtain sample-path large deviations for X̄n? i.e.

P(X̄n ∈ A) ∼ ???, n→∞
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Overview

Motivation and introduction

Main result: sample path large deviations principles

Implications:
I Random walks
I Conditional limit theorem
I Connections to the standard LD framework

Examples

Comments on proof
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Large deviations

Let Ui , i ≥ 1 be an i.i.d. sequence with E [U1] = 0.

Let S0 = 0 and for n ≥ 1, let Sn = U1 + . . .+ Un.

The weak law of large numbers (WLLN) states that

lim
n→∞

P(|Sn/n| > ε) = 0

for every ε > 0.

How fast is the convergence to 0 in the WLLN?
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Cramérs theorem

Cumulant generating function of U1: Λ(s) = log E [esU1 ]

Convex conjugate of Λ: Λ∗(a) = sups≥0[as − Λ(s)].

Theorem (Cramér (1938))
For a > 0:

lim
n→∞

1

n
logP(Sn/n > a) = −Λ∗(a).

What about P(Sn/n ∈ A)?
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The large-deviations principle (Varadhan, 1966)

A sequence of r.v.’s Zn satisfies an LDP with rate function I if I is lower
semi-continuous and

− inf
ξ∈A◦

I (ξ) ≤ lim inf
n→∞

log P(Zn ∈ A)

n
≤ lim sup

n→∞

log P(Zn ∈ A)

n
≤ − inf

ξ∈A−
I (ξ),

Example: Zn = Sn/n and I = Λ∗.

Some cornerstones:

Contraction principle (analogue of continuous mapping principle)

Connections with convex & variational analysis, statistical physics, ....

Often Crucial: the property that I is good (i.e. has compact level sets).
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Heavy tails

Cramérs theorem does not give a precise answer (0) if

E [eεU ] =∞

for all ε > 0. In this case, we say that U has a heavy (right) tail.

Examples of heavy tails:

Pareto: P(U > x) ∼ x−α

Lognormal: P(U > x) ∼ e−(log x)
2

Weibull: P(U > x) ∼ e−x
α

, α ∈ (0, 1).

Any df with a hazard rate decreasing to 0.
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The principle of a single big jump

Theorem (A. Nagaev, 1969) Let Ui be i.i.d. with mean 0 and
P(U1 > x) = L(x)x−α. Let Sn = U1 + . . .+ Un and a > 0. Then

P(Sn/n > a) ∼ nP(U1 > an).

Heavy-tailed analogue of Cramérs theorem

Most general formulation of this result in Dieker, Denisov, Shneer (2008).
Necessary (due to CLT): P(U1 > n) ∼ P(U1 > n + O(

√
n)).

In heavy-tailed world, rare events happen by catastrophes.
In light-tailed world, by conspiracies
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Main motivation of this work

In many applications, we can write our object of interest as a mapping Ψ
of the sample path of a random walk or Levy process.
Recall

X̄n(t) = X (nt)/n, X̄n = {X̄n(t), t ∈ [0, 1]}.

Let Ψ be a continuous mapping on D. What can we say about

P(Ψ(X̄n) ∈ B) = P(X̄n ∈ Ψ−1(B))?

Need

Estimate of P(X̄n ∈ A) for sufficiently many sets A.

A version of a contraction principle/continuous mapping theorem

Sample-path result of Hult/Lindskog/Mikosch/Samorodnitsky (2005)
applies to single big jump case only
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Additional motivation: multiple big jumps

Contractual graph of an 
Insurance-reinsurance Network 

Insurance-reinsurance networks (Blanchet & Shi 2015)

Fluid queues with On-Off sources (Z, Borst, Mandjes 2004)

Many-server queues (Foss & Korshunov 2006, 2012)

Our vision: a structural approach to such problems, in line with
large-deviations theory for light-tailed systems and weak convergence
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Spectrally positive Lévy processes

X (s) = sa+B(s)+

∫
0<x≤1

x [N([0, s]×dx)−sν(dx)]+

∫
x>1

xN([0, s]×dx),

E [X (s)] = 0,

a is a drift parameter,

B a Brownian motion,

N is a Poisson random measure with mean measure Leb×ν on
[0, 1]× (0,∞);

ν is a measure on (0,∞) satisfying
∫ 1
0 x2ν(dx) <∞ and

ν(x ,∞) = L(x)x−α, α > 1.
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Spectrally positive Lévy processes (2)

Some notation:

Dj : subspaces of the Skorokhod space D consisting of nondecreasing
step functions, vanishing at the origin, with exactly j jumps

D6j ,
⋃

0≤i≤j Di

D+(ξ): the number of upward jumps of an element ξ in D.

Finally, set
J (A) , inf

ξ∈D<∞∩A
D+(ξ).
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Main result for one-sided case

Theorem 1
Suppose that A is a measurable set. If J (A) <∞, and if A is bounded
away from D6J (A)−1, then

CJ (A)(A
◦) ≤ lim inf

n→∞

P(X̄n ∈ A)

(nν[n,∞))J (A)
≤ lim sup

n→∞

P(X̄n ∈ A)

(nν[n,∞))J (A)
≤ CJ (A)(A

−).

Recall
J (A) , inf

ξ∈D<∞∩A
D+(ξ).

J (A) is the number of jumps needed to achieve the event X̄n ∈ A.
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The pre-factor and a conditional limit theorem

ν jα: restriction to Rj↓
+ of the j-fold product measure of να, where

να(x ,∞) , x−α.

For j ≥ 1, Cj(·) , E
[
ν jα{y ∈ (0,∞)j :

∑j
i=1 yi1[Ui ,1] ∈ ·}

]
, with

Ui , i ≥ 1 are i.i.d. uniform on [0, 1].

If, in addition, CJ (A)(A
◦) = CJ (A)(A

−) and if A is bounded away from
D6J (A)−1, Theorem 1 implies

P(X̄n ∈ · | X̄n ∈ A)
d→

CJ (A)(· ∩ A)

CJ (A)(A)
.
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Two-sided Lévy processes

X (s) = sa+B(s)+

∫
0<|x |≤1

x [N([0, s]×dx)−sν(dx)]+

∫
|x |>1

xN([0, s]×dx),

E [X (s)] = 0,

a is a drift parameter,

B a Brownian motion,

N is a Poisson random measure with mean measure Leb×ν on
[0, 1]× (−∞,∞);

ν is a measure on (−∞,∞) satisfying
∫ 1
−1 x

2ν(dx) <∞,

ν(x ,∞) = L+(x)x−α, ν(−∞,−x) = L−(x)x−β,

α, β > 1.
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Two-sided Lévy processes (2)

Some notation:

Dj ,k : step functions vanishing at the origin with exactly j upward
jumps and k downward jumps.

D<j ,k =
⋃

(l ,m)∈I<j,k
Dl ,m and

I<j ,k = {(l ,m) ∈ Z2
+\(j , k) : (α−1)l+(β−1)m ≤ (α−1)j+(β−1)k}.

Let I(j , k) , (α− 1)j + (β − 1)k, and consider

(J (A),K(A)) ∈ arg min
(j ,k)∈Z2

+;Dj,k∩A6=∅
I(j , k).
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Main result for two-sided case

Theorem 2 Suppose that A is a measurable set. If the argument minimum
(J (A),K(A)) is unique and A is bounded away from D<J (A),K(A), then

lim inf
n→∞

P(X̄n ∈ A)

(nν[n,∞))J (A)(nν(−∞,−n])K(A)
≥ CJ (A),K(A)(A

◦)

lim sup
n→∞

P(X̄n ∈ A)

(nν[n,∞))J (A)(nν(−∞,−n])K(A)
≤ CJ (A),K(A)(A

−).

Cj ,k(·) , E
[
ν jα × νkβ{(x , y) ∈ (0,∞)j+k :

j∑
i=1

xi1[Ui ,1] −
k∑

i=1

yi1[Vi ,1] ∈ ·}
]
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The rate function

The minimization problem

arg min
(j ,k)∈Z2

+;Dj,k∩A 6=∅
(α− 1)j + (β − 1)k

can be cast as a deterministic impulse control problem.

Related framework: Barles (1985).
[Stochastic IC: Bensoussan & Lions (1984), Dai & Yao (2014)]

Optimality of such problems can be described by quasi-variational
inequalities.

In examples we solve the minimization problem directly.
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Random walks

S(k), k ≥ 0: centered random walk

S̄n(t) = S([nt])/n, t ≥ 0, and S̄n = {S̄n(t), t ∈ [0, 1]}.
N(t), t ≥ 0: unit rate Poisson process.

X (t) , SN(t), t ≥ 0, X̄n(t) and X̄n are as defined before

S̄n satisfies the same limit theorem as X̄n.

Proof idea: Skorokhod distance between S̄n and X̄n is bounded by

sup
t∈[0,1]

[N(nt)/n − t].
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Connection with large deviations framework

Let X̄n be a centered and scaled two sided Lévy process with Lévy measure
ν satisfying

ν(x ,∞) = L+(x)x−α, ν(−∞,−x) = L−(x)x−β,

Define

I (ξ) ,

{
(α− 1)D+(ξ) + (β − 1)D−(ξ), if ξ is a step function, ξ(0) = 0,
∞, otherwise.

.

I is lower semi-continuous on D but does not have compact level sets
⇒ I is a rate function, but not a good rate function
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Weak large deviations principle

Theorem 3
The scaled process X̄n satisfies the weak large deviations principle
with rate function I and speed log n, i.e.,

lim inf
n→∞

log P(X̄n ∈ G )

log n
≥ − inf

x∈G
I (x)

for every open set G , and

lim sup
n→∞

log P(X̄n ∈ K )

log n
≤ − inf

x∈K
I (x)

for every compact set K .

Proof idea: reduce everything to balls, and use Theorem 2.
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Nonexistence of strong large deviations principle

The upper bound in Theorem 3 can not be extended to all closed sets.

Take α = β = 2 for ease of exposition

Set π(ξ) ,
(

supt∈(0,1]
(
ξ(t)− ξ(t−)

)
, supt∈(0,1]

(
ξ(t−)− ξ(t)

))
.

If X̄n satisfies a strong LDP, the contraction principle implies that
π(X̄n) satisfies an LDP with rate function I ′ given by

I ′(y1, y2) = I(y1 > 0) + I(y2 > 0).
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Nonexistence of strong large deviations principle (ctd)

Consider the closed set A ,
⋃∞

k=2[log k ,∞)× [k−1/2,∞).

P(π(X̄n) ∈ A) ≥ P(π(X̄n) ∈ [log n,∞)× [n−1/2,∞)),

The log of the RHS behaves like −1 ∗ log n (one big jump needed),

This contradicts with − inf(y1,y2)∈A I ′(y1, y2) = −2
(suggesting two big jumps are needed),

We need the condition that A is bounded away from the set of step
functions with at most one big jump
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Examples

We consider several functionals of X̄n, leading to specific A.

Need to check that A is bounded away from D6J (A)−1

It suffices to check that Aδ ∩ D<∞ is bounded away from D6J (A)−1.
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Moderate jumps

Motivated by a reinsurance problem we consider

Q(n) , P

(
sup

t∈[0,1]
[X̄n(t)− ct] ≥ a; sup

t∈[0,1]
[X̄n(t)− X̄n(t−)] ≤ b

)
,

A , {ξ ∈ D : sup
t∈[0,1]

[ξ(t)− ct] ≥ a; sup
t∈[0,1]

[ξ(t)− ξ(t−)] ≤ b},

J (A) = da/be.

Condition on A holds iff a/b is not an integer, in which case

Q(n) ∼ Cda/be(A)(nν[n,∞))da/be.
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A barrier digital option

Consider a Lévy-driven Ornstein-Uhlenbeck process of the form

dȲn (t) = −κdȲn (t) + dX̄n (t) , Ȳn (0) = 0.

We apply our results to estimate

b(n) = P( inf
0≤t≤1

Ȳn(t) ≤ −a−, Ȳn(1) ≥ a+).

Theorem 2 applies, and we obtain

b (n) ∼ C1,1 (A) nν[n,∞)nν(−∞,−n]

as n→∞.
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A = {ξ : l ≤ ξ ≤ u}: only jump when you must

1 
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Proof: M-convergence (Lindskog, Resnick, Roy 2014)

Let (S, d) be a complete separable metric space, and S be the Borel
σ-algebra on S.

Given a closed subset C of S, define Cr , {x ∈ S : d(x ,C) < r} for
r ≥ 0, and let M(S \ C) be the class of measures defined on SS\C
whose restrictions to S \ Cr are finite for all r > 0.

CS\C is the set of real-valued, non-negative, bounded, continuous
functions whose support is bounded away from C (i.e., f (Cr ) = {0}
for some r > 0).

A sequence of measures µn ∈M(S \ C) converges to µ ∈M(S \ C) if
µn(f )→ µ(f ) for each f ∈ CS\C.

For Theorem 1, we take S = D and C = D≤j−1.
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Characterization of M convergence (LRR2014)

Let µ, µn ∈M(S \ C). Then µn → µ in M(S \ C) as n→∞ if and only if

lim sup
n→∞

µn(F ) ≤ µ(F ) (1)

for all closed F ∈ SS\C bounded away from C and

lim inf
n→∞

µn(G ) ≥ µ(G ) (2)

for all open G ∈ SS\C bounded away from C.

For Theorem 1, we take S = D and C = D≤j−1.
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Asymptotic equivalence (RBZ2016)

Suppose that Xn and Yn are random elements taking values in a complete
separable metric space (S, d). Yn is said to be asymptotically equivalent to
Xn with respect to εn and C, if, for each δ > 0 and γ > 0,

lim sup
n→∞

ε−1n P(Xn ∈ (S \ C)−γ , d(Xn,Yn) ≥ δ) = 0

lim sup
n→∞

ε−1n P(Yn ∈ (S \ C)−γ , d(Xn,Yn) ≥ δ) = 0.

For Theorem 1 it suffices to take C = ∅.
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Proof: M-convergence: the one-sided case

Theorem 1 follows from

Theorem 1’
For each j ≥ 1,

(nν[n,∞))−jP(X̄n ∈ ·)→ Cj(·), (3)

in M(D \ D6j−1), as n→∞.
Proof:

X̄n is asymptotically equivalent to J jn which is the process obtained
from X̄n keeping its j biggest jumps.

Show both are asymptotically equivalent

Use representation for J jn and many detailed technical estimates
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Final Comments

M convergence does not seem to deal easily with continuous maps of
superpositions of processes

Consequently, proof much more technical in two-sided case

Some current/future topics:
I application to rare-event simulation
I subexponential (Weibull) tails
I more exotic examples requiring infinitely many jumps, e.g.

P(t ≤ X̄n(t) ≤ 2t, t ∈ [0, 1]). (4)
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