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What this talk is about

Let X(t),t > 0 be a Lévy process, such that

P(X(1) > x) = Ly (x)x™ 9, P(X(1) < —x) = L_(x)x%.

Set

Xa(t) = X(nt)/n, Xo = {Xa(t), t € [0,1]}.

Can we obtain sample-path large deviations for X,? i.e.

P(X, € A)~ 277, n— 00
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Overview

Motivation and introduction

Main result: sample path large deviations principles

Implications:
» Random walks
» Conditional limit theorem
» Connections to the standard LD framework

Examples

e Comments on proof
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Large deviations

Let U;,i > 1 be an i.i.d. sequence with E[U;] = 0.
Let S =0andforn>1,letS,= U+ ...+ U,.

The weak law of large numbers (WLLN) states that
nIl_)ngo P(|Sn/n| >€) =0

for every € > 0.

How fast is the convergence to 0 in the WLLN?
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Cramérs theorem

e Cumulant generating function of U;: A(s) = log E[e
o Convex conjugate of A: A*(a) = supg>olas — A(s)].

Theorem (Cramér (1938))
For a > 0:

.1 *
n||—>r20 - log P(Sn/n > a) = —N\*(a).

What about P(S,/n € A)?

B. Zwart (CWI) Heavy tails

5/32



The large-deviations principle (Varadhan, 1966)

A sequence of r.v.'s Z,, satisfies an LDP with rate function I if / is lower
semi-continuous and
log P(Z, € A)

—inf 1(§) < Ilnn—]>lorl>f -

log P(Z, € A) :
<| — = << —inf
At < limsup < inf 1(&),

n—00 n EEA™

Example: Z, = S,/n and | = A\*.

Some cornerstones:

e Contraction principle (analogue of continuous mapping principle)

@ Connections with convex & variational analysis, statistical physics, ....

Often Crucial: the property that / is good (i.e. has compact level sets).
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Heavy tails
Cramérs theorem does not give a precise answer (0) if
E[eV] = >0
for all € > 0. In this case, we say that U has a heavy (right) tail.

Examples of heavy tails:
e Pareto: P(U > x) ~ x™¢

o Lognormal: P(U > x) ~ e~(logx)’
e Weibull: P(U > x) ~ e, a € (0,1).
@ Any df with a hazard rate decreasing to 0.
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The principle of a single big jump

Theorem (A. Nagaev, 1969) Let U; be i.i.d. with mean 0 and
P(Ui > x)=L(x)x . Let S, = Uy +...+ U, and a> 0. Then

P(S,/n > a) ~ nP(U; > an).

Heavy-tailed analogue of Cramérs theorem

Most general formulation of this result in Dieker, Denisov, Shneer (2008).
Necessary (due to CLT): P(Ui > n) ~ P(Ur > n+ O(y/n)).

In heavy-tailed world, rare events happen by catastrophes.
In light-tailed world, by conspiracies
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Main motivation of this work

In many applications, we can write our object of interest as a mapping ¥

of the sample path of a random walk or Levy process.
Recall

Xo(t) = X(nt)/n, Xo = {Xa(t), t € [0, 1]}

Let W be a continuous mapping on ID. What can we say about

P(V(X,) € B) = P(X, € V1(B))?
Need
o Estimate of P(X, € A) for sufficiently many sets A.

@ A version of a contraction principle/continuous mapping theorem

e Sample-path result of Hult/Lindskog/Mikosch/Samorodnitsky (2005)
applies to single big jump case only
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Additional motivation: multiple big jumps

Contractual graph of an
Insurance-reinsurance Network

@ Insurance-reinsurance networks (Blanchet & Shi 2015)
@ Fluid queues with On-Off sources (Z, Borst, Mandjes 2004)
e Many-server queues (Foss & Korshunov 2006, 2012)

Our vision: a structural approach to such problems, in line with
large-deviations theory for light-tailed systems and weak convergence
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Spectrally positive Lévy processes

X(s) = sa+ B(s)+/

XIN([0, 5] x dx) —s(dx)] + / N[0, 5] x dx),
0<x<1

x>1
E[X(s)] =0,
a is a drift parameter,

B a Brownian motion,

N is a Poisson random measure with mean measure Lebxv on
[0, 1] x (0, 00);

e v is a measure on (0, 00) satisfying fol x2v(dx) < oo and
v(x,00) = L(x)x™, a> 1.

B. Zwart (CWI) Heavy tails 11 /32



Spectrally positive Lévy processes (2)

Some notation:

@ ID;: subspaces of the Skorokhod space ID consisting of nondecreasing
step functions, vanishing at the origin, with exactly j jumps

° Dgj = Upcic; D
@ D (&): the number of upward jumps of an element £ in D.

o Finally, set

T2 inf Di(g).

€D NA
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Main result for one-sided case

Theorem 1

Suppose that A is a measurable set. If J(A) < oo, and if A is bounded
away from D¢ 7(4)—1, then

o .. P(X,€A . P(X, € A) _
o) < iminf (o, oong®@ = TP G, @ = S (A7)
Recall

JA)LE inf D).

£eDcNA

J(A) is the number of jumps needed to achieve the event X, € A.
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The pre-factor and a conditional limit theorem

° z/{;Y restriction to Rji of the j-fold product measure of v,, where
Va(x,00) & x=9,

e Forj>1,G()= E[Vé{y € (0,00) : 2{21 yiliy,a) € }} with
Ui,i > 1 are i.i.d. uniform on [0, 1].

If, in addition, C7(a)(A°) = C7(a)(A7) and if A is bounded away from
D¢ 7(a)-1, Theorem 1 implies

_ _ Cra(-NA)
d Cr(a)
P(X,e | X,e A) - —"——~.

( | ) Cra(A)
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Two-sided Lévy processes

x[N([O, s] x dx)—su(dx)]—i—/ . xN([0, s] x dx),

X(s) = sa+B(s)+ /
0<|x|<1

e E[X(s)] =0,

@ ais a drift parameter,

@ B a Brownian motion,

@ N is a Poisson random measure with mean measure Lebxv on
[Ov ]'] X (_007 OO);
@ v is a measure on (—o0, 00) satisfying f_ll x2v(dx) < oo,
—Q

v(x,00) = Ly(x)x™ %, v(—00, —x) = L_(x)x P,

a, B> 1.
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Two-sided Lévy processes (2)

Some notation:

@ D : step functions vanishing at the origin with exactly j upward
jumps and k downward jumps.

o D(j,k = U(I,m)€l<j,k ]D)/’m and
lejue = {(l;m) € ZZ\(j, k) : (a=1)I+(B—1)m < (a—1)j+(B—1)k}.
o Let Z(j, k) £ (o — 1)j + (B — 1)k, and consider

(T(A),K(A)) € arg min  Z(j, k).
(j,k)E€Z2 D} kNAZD
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Main result for two-sided case

Theorem 2 Suppose that A is a measurable set. If the argument minimum
(J(A),K(A)) is unique and A is bounded away from D 7(4) x(a). then

lim inf PiXn € A
n—o0 (ny[n’ oo))J(A)(nI/(—OO, —n]

EQ > Cr(a)k4)(A°)

limsu P()_(" €A)
o (nv[n, 00))7 (A (nv(—oc

A = @A)

J k
Gik(-) 2 E[Vé X Vg{(x,y) € (0,oo)-’+k : inl[U;,ll — nyl[\/i,ll € }]
i=1 i=1
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The rate function

@ The minimization problem

argmin  (a—1)j+ (8 —1)k
(j,k)eZi;DLkﬂA#@

can be cast as a deterministic impulse control problem.

@ Related framework: Barles (1985).
[Stochastic IC: Bensoussan & Lions (1984), Dai & Yao (2014)]

@ Optimality of such problems can be described by quasi-variational
inequalities.

@ In examples we solve the minimization problem directly.
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Random walks

@ S(k),k > 0: centered random walk

o S,(t) = S([nt])/n,t >0, and S, = {5,(t),t € [0,1]}.
e N(t),t > 0: unit rate Poisson process.

o X(t) = Sy, t >0, X,(t) and X, are as defined before

S, satisfies the same limit theorem as X,

Proof idea: Skorokhod distance between S, and X, is bounded by

sup [N(nt)/n — t].
te[0,1]
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Connection with large deviations framework

Let X, be a centered and scaled two sided Lévy process with Lévy measure
v satisfying

v(x,00) = Li(x)x™ 9, v(—o0, —x) = L_(x)x?,

Define

I(¢) £ { (a = D)Do(€) + (B — 1)D_(&), if £ is a step function, £(0) = 0,

00, otherwise.

| is lower semi-continuous on D but does not have compact level sets
= | is a rate function, but not a good rate function
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Weak large deviations principle

Theorem 3

The scaled process X, satisfies the weak large deviations principle
with rate function / and speed logn, i.e.,

log P(X,
IiminfM > — inf I(x)
n—00 |og n xeG
for every open set G, and
log P(X, € K
IimsupM < — inf I(x)
N300 log n xeK

for every compact set K.

Proof idea: reduce everything to balls, and use Theorem 2.
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Nonexistence of strong large deviations principle

The upper bound in Theorem 3 can not be extended to all closed sets.
o Take o = 8 = 2 for ease of exposition
o Set 7(£) 2 (‘supreoa (6(t) — £(t-)), subreony (€(t-) — (1) ).

e If X, satisfies a strong LDP, the contraction principle implies that
7(Xp) satisfies an LDP with rate function /" given by

I'(y1,y2) = I(y1 > 0) +I(y2 > 0).
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Nonexistence of strong large deviations principle (ctd)

o Consider the closed set A £ [J32,[log k, 00) x [k~1/2, c0).
o P(n(X,) € A) > P(n(X,) € [log n,o0) x [n71/2, x0)),
@ The log of the RHS behaves like —1 % log n (one big jump needed),

o This contradicts with —inf(,, \.yea l'(y1,y2) = —2
(suggesting two big jumps are needed),

We need the condition that A is bounded away from the set of step
functions with at most one big jump
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Examples

@ We consider several functionals of X,, leading to specific A.

@ Need to check that A is bounded away from D¢ 7(a)—1

o It suffices to check that A° N D, is bounded away from D¢ 7eay-1-
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Moderate jumps

Motivated by a reinsurance problem we consider

Q(n)=P ( sup [Xn(t) —ct] > a; sup [Xa(t) — Xp(t—)] < b) ,

te[0,1] t€[0,1]

AZ{EeD: sup [£(t) —ct] > a; sup [£(t) — &(t—)] < b},
te[0,1] te[0,1]

J(A) = [a/b].

Condition on A holds iff a/b is not an integer, in which case
Q(n) ~ Crapw) (A)(nv[n, 00))1*/*1.
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A barrier digital option

Consider a Lévy-driven Ornstein-Uhlenbeck process of the form

dY, (t) = —kd Vs (t) + dXn (1), ¥, (0) = 0.

We apply our results to estimate

Theorem 2 applies, and we obtain
b(n) ~ Cy 1 (A) nv[n, co)nv(—oo, —n]

as n — o0.
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A={£:1<¢ < u}: only jump when you must
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Proof: M-convergence (Lindskog, Resnick, Roy 2014)

Let (S, d) be a complete separable metric space, and .¥ be the Borel
o-algebra on S.

Given a closed subset C of S, define C" = {x € S: d(x,C) < r} for
r >0, and let M(S \ C) be the class of measures defined on .7s\¢
whose restrictions to S\ C" are finite for all r > 0.

Cs\c is the set of real-valued, non-negative, bounded, continuous
functions whose support is bounded away from C (i.e., f(C") = {0}
for some r > 0).

@ A sequence of measures u, € M(S\ C) converges to p € M(S \ C) if
pin(f) — u(f) for each f € Cs\c.

For Theorem 1, we take S =D and C = D<;_;.
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Characterization of M convergence (LRR2014)

Let i, un € M(S\ C). Then pp — pin M(S\ C) as n — oo if and only if

lim sup zin(F) < p(F) (1)

n—o0

for all closed F € .5 ¢ bounded away from C and
liminf 1,(G) > 1(G) (2)
for all open G € 5\ ¢ bounded away from C.

For Theorem 1, we take S =D and C = D<;_;.
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Asymptotic equivalence (RBZ2016)

Suppose that X, and Y, are random elements taking values in a complete

separable metric space (S, d). Y, is said to be asymptotically equivalent to
X, with respect to €, and C, if, for each 6 > 0 and v > 0,

limsupe, 'P(X, € (S\C)™7,d(Xpn, Yn) >6) =0

n—oo

limsupe, P(Y, € (S\ C)™,d(Xy, Y») > d) =0.

n—oo

For Theorem 1 it suffices to take C = ().
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Proof: M-convergence: the one-sided case

Theorem 1 follows from

Theorem 1’
For each j > 1, o

(nv[n, o)) ?P(X, € 1) — G(+), (3)
in M(D\ Dgj—1), as n — oo.

Proof:

e X, is asymptotically equivalent to # which is the process obtained
from X, keeping its j biggest jumps.
@ Show both are asymptotically equivalent

@ Use representation for #, and many detailed technical estimates
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Final Comments

@ M convergence does not seem to deal easily with continuous maps of

superpositions of processes
@ Consequently, proof much more technical in two-sided case

@ Some current/future topics:

» application to rare-event simulation
» subexponential (Weibull) tails
» more exotic examples requiring infinitely many jumps, e.g.

P(t < Xa(t) < 2t,t €[0,1]).
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