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intro

e we study relations between a Lévy process X = (X¢)¢>0, its
quadratic variation process V = (V;)¢>0, and its maximal jump
processes, with particular interest in how these processes, and how
positive and negative parts of the X process, interact.

e ratio of the process to its extremes in the random walk situation:
Darling (1952), Arov & Bobrov (1960), Maller & Resnick (1984),
Kesten & Maller ((1992), (1994)); almost sure versions of
sum/max relationships, see Feller (1968), Kesten & Maller (1995),
Pruitt (1987).

e trimmed sums concerning heavy tailed distributions: Csorgo,
Haeusler & Mason (1988), Berkes & Horvath (2010), Berkes,
Horvath & Schauer (2010), and Griffin & Pruitt (2013); Silvestrov
& Teugels (2002) concerns sums and maxima of random walks and
triangular arrays; Ladoucette & Teugels (2013) for an insurance
application; connections to St. Petersburg game: Gut &
Martin-Lof (2014) give a “maxtrimmed” version of the game, while
Fukker, Gyorfi & Kevei (2015).



intro

e Relevant to our topic, includes that of Doney (2004),
Andrew (2008), Bertoin (1997), Doney (2007)

e identities allow for possible ties in the order statistics of the
jumps. point process versions are motivated by LePage (1980,
1981), LePage, Woodroofe & Zinn (1981), Mori (1984) for
trimmed sums, Khinthine's inverse Lévy measure method (1937),...
Rosinski (2001) summarises alternative series representations for
Lévy processes.



notation

e let X = (Xt)¢>0 be a real-valued Lévy process with canonical
triplet (v, 02, M) and characteristic function EelfXe = otV(0) + >0,
0 € R, with characteristic exponent

V() = ify — %0202 + / (e — 1 —10x1 5 <13)(dx)
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notation

e let X = (Xt)¢>0 be a real-valued Lévy process with canonical
triplet (v, 02, M) and characteristic function EelfXe = otV(0) + >0,
0 € R, with characteristic exponent

V() = ify — %0202 + / (e — 1 —10x1 5 <13)(dx)

e measures on (0,00): M) is M restricted to (0, 00), M) is
M(—-) restricted to (0, 00), and Ml := N 4 n)

AN(y) :=M{{y}}, y € Ry, and Al(y) := M(y—) = T(y), y >0
e positive, negative and two-sided tails of I1 are

ﬁ+(x) = MN{(x,00)}, M (x) := N{(—o00, —x)}, N(x) := ﬁ+(x)+ﬁ

M (x) =inf{y > 0:TI(y) < x}, x > 0, denotes the
right-continuous inverse of the nonincreasing function

(%),
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e one-sided and modulus trimmed versions of X are defined as

X, = X, — ZAX and VX, = X, — ZAX
i=1

e introduce two families of processes, indexed by v > 0, truncating
jumps from sample paths of X; and V4, respectively. let v, t > 0.
if M(0+) = oo, then set

Xtv = Xt — Z AXs 1{|AX5|2ﬁH(V)}
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if TT7(0+) = oo, then set

X{=Xe— Y DXy moe

0<s<t
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representation theorem
assume independent X, &,, YT, Y, and Y,
where r € N, &, ~Gamma(r,1), Y* = (Y5 )0 and Y = (Y) >0
are independent Poisson processes with EY:" = EY; =1
(i) if T (0+) = oo, for t,v >0, let w(v) =1 (A7 (v)=) — v,
and GY =TT (v) Yin(v) then, for t > 0, we have

(X, 6X) 2 (X + 64T ()], e e

(i) if M(0+) = oo, then ,for t,v > 0, let
. AN (07 (v
()= (M0 (v) =) = v) M((Ije((‘/);)l{m(n“(v))ﬂ}
G = ﬁk(V)(Y;Z+( Yo (v)

then, for each t > 0, we have

(% X)) 2 (% + 61 () e
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let X be a Poisson point process (PPP) on [0, 00) x R, with
intensity measure ds ® IN(dx)

X= Z (s,A%,)

PPPs of positive and negative jumps and jumps in modulus with
intensity measures ds ® I_Ii’H(dx), respectively,

X* = Z 1(0,00)(FAXs)0(s +axX,)
XH = XJr + Xﬁ = Zé(sylAXSD

restrict processes to the time interval s € [0,¢], t > 0,

Xe() == X([0, ]xR.N ) and  XEM() =xEH(([0, % (0, 00)N )
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order statistics with ties
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e assuming ﬁ+(

0+) = oo, introduce in [0, t] x (0, c0),
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order statistics with ties

similarly,
e assuming ﬁ+(0+) = 00, introduce in [0, t] x (0, c0),

(TOED), axM), (TOH), axP), (TOH), axP),. ..

such that AXt(l) > 2> AXt(r) are the rt" largest order statistics
of positive jumps of X sampled on time interval [0, ]

e subtract points corresponding to large jumps, introduce the
r—fold trimmed extremal process of positive jumps by

(r) + _ Yt _
X{ =X Z J (TOXF), AXD)
1<i<r
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alternative representation
o let (), (&) and (€&;) be independent, where (4I;) and () are
iid sequences of uniform rvs in (0,1), (&;) is i.i.d. sequence of
exponential rvs with parameter E¢; = 1.

e S, =>7_; ¢ is standard Gamma random walk, r € N.
ofort>0

Vt = Zé(tﬂ,‘,e,'/t) and V/t = Zé(tﬂ,‘,ﬂ§,6;/t)

i>1 i>1

V: and V', are homogeneous PPPs on [0, t] x (0,00) and
[0, t] x (0,1) x (0,00) with intensity measures ds ® dv and
ds ® du’ ® dv, respectively.

o for r € Ng :={0,1,2...}, introduce r—fold trimmed
counterparts:

OV = Sugeyn and V=" 6 we

i>r i>r



transformations for T (0+) = oo

o if T (0+) = 0o then transform

(1,TT7) 1 [0, ¢] x (0, 00) — [0, 00) x (0, 00)

such that
A
Vi '_ Z‘%m;,ﬁ**(e,ﬁ))
i>1
T (LA N
()Vt = Z‘S(tu,-,ﬁ*“(ca,-/t))'

i>r
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(1, 1,TT7) 2 [0, ] x (0,1) x (0,00) — [0, ] x (0,1) x (0, )

e with Radon-Nikodym dM=* = g*dnl'l write
g* : (0,00) — (0,00) with gt 4+ g~ =1 and dN* = g=dNl'
returning signs by m: [0, t] x (0,1) x (0,00) — [0, t] x R,

L (sx), ifu <gt(x)
m(s,u’,x) = { (s,—x), ifu >gt(x)

e map: -
1
(L

) )
V'r = Z 5(ru,-,u;,ﬁ“(e,»/t))

i>1

m mo(1IAT)
— V/t = Z(sm(tﬂi,ﬂﬁﬁ(—(ﬁi/ﬂ)
i>1



lemma

let t>0 and r ¢ N.
(i) if T7(0+) = oo, then

Vg,ﬁ**)

(14, T (&:/1))

Xy

o o

() e+ (i
t /)
(TOF), AX:")

i>1

;)

i>1

1o

{(TOE), ax{)

1<i<p

J— S
(e, T 5(Si/)) s, OV,

<i<r



lemma

let t>0and r e N.
(i) if 7 (04) = oo, then

1A
X A% )

i>1 (24, ﬁ—h(_(Gi/t))izl
(f)X?-}

o o

(N (xx+ (i)
t /)
(T, aXY)

1o

{(TOED), ax?)

1<i<r

Inl SRtk
{(e, T (81/0) e, Iy,

(i) if T(0+) = oo, then

Xt 2 V,;no(l,l,ﬁe)
(TO(X,), AX()) b (m(tehy, 4, 117(8/1))) 12,
avil) r
{(TO(Xe), AX, )1§i§r’( Xe) =

{(m(tuf’u:'vﬁe(ei/f)))gigr,(r)V'TO(I’I’ﬁ '}
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representation theorem (PPP)

assume X, (8;), (£), &,, YE = (YE(t))ez0, Y = (Y(¢))r>0, are
independent, with Y* and Y standard Poisson processes.

for x > 0 delete points in X;” and X; not lying in [0, t] x (0, x) and
[07 t] X (_va)*:
X< = XH([0, ] x (0, x)N - ) and XF = X([0, ] x (—x, x)sN - ).
(i) if ﬁ+(0+) = 00, then for all t > 0, r € N,
w(v) =TT (A7 (v)-) — v
(r) D e +<77(v) Y
r r —m . v
(AX | )X;r) = (M (v), X{ + Z 5(mhﬁ+,e
i=1
(ii) if (0+) = oo then, for all t >0, r € N,

(|A/7<§r)|? (r)ggt)

(v)))v:G,/t‘

Y+(trt(v)) Y~ (th™(v))

D /¢ 1< (v
= (” (V)7XL| { )+ Z 5(tu,-,ﬁ“(v))+ Z 5(tﬂ§,fﬁ<_(v)))v:6,/t
i=1 i=1



representation theorem (LP revisited)
assume independent X, &,, YT, Y, and Y,
where r € N, &, ~Gamma(r,1), Y* = (Y5 )0 and Y = (Y) >0
are independent Poisson processes with EY:® = EY; = 1.
(i) if 17 (0+) = oo, for t,v >0, let w(v) == (A7 (v)=) — v,
and GY =TT (v) Yin(v) then, for t > 0, we have

(( )Xh AX(r)) (Xv + G |—|+,<—(V))‘V:6r/t

(i) if M(0+) = oo, then ,for t,v > 0, let

AN(EN(v)
AT () (ﬁe(v)) {Af(N™ (v))#0}

/ii(v) = (I'I (ﬁe (v) —) - v)

G =T (V) Yo )
then, for each t > 0, we have

(% 18X 2 (R 4 6T ()] e,



X comparable with its large jump processes

theorem suppose 02 = 0 and T(0+) = oco. then

iff (x) € SV at 0 (so that X is of bounded variation) and X has
drift 0. These imply
g
[AX, |

(1)’

— i>O, ast ] 0;
[AX,

and conversely (*) implies M(x) € SV at 0



X comparable with its large jump processes-(one-sided
version)

theorem suppose M (0+) = co. then

Xt P
Ax®M

iff TT"(x) € SV at 0, X is of bounded variation with drift 0, and
lim, o (x)/T" (x) = 0.



comparing positive & negative jumps

define AX;" := max(AX;,0), AX; := max(—AX;,0), and

(AX*)gl) = sup AX; and (AX*)gl) = sup AX;, t>0.

0<s<t 0<s<t

positive and negative jump processes are independent.
when the integrals are finite, define

X 1
As() = [Ty = x [ T Conay.



theorem (comparing positive & negative jumps)
Suppose T (0+) = o0o. For (1) assume Y ocs<e AXS is finite ass.,
and for (2) assume >__.., AX; is finite a.s. For (3), assume
both are finite a.s. Then

T (y)d
ZO<S<—t —>O ast | 0if and only if Imw =0;
SUPo<s<t AXF 10 xT1 (X)
also
AXS M
(2) SUPIKS% —>O ast | 0, if and only if ||mx+7(x) =0;
EO<s§t AXs fo M (y)dy
and
T (y)d
(3 )Zo<s<—t —>0 ast | 0, if and only if Imwzo.
ZO<s<t x40 f (yv)d
Finally,
SUpgos<s AXg M (ex)

HO ast | 0, if and only if lim =0foralle >0

SupO<SSt AXS x{0 |_|+(X)
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X dominating its large jump processes
versions of truncated first and second moment functions:

v(x) = 'y—/<| - yM(dy) and V(x) = 02+/ y?N(dy), x > 0.

0<ly|<x

variants of v(x) and V/(x) are Winsorised first and second:

1
AG) =+ T (W) =TT (@)= [ ([T 0) =TT ()ay

and N
U(x) = 0® + 2/ yM(y)dy, for x > 0.
0

A(x) and U(x) are continuous for x > 0.
using Fubini's theorem,

A(x) = v(x) +x(TT (x) =TT (x))
and

U(x) = Vx) + 2 () + T (x)) = V(x) +x°TI(x)



thm (X dominating its large jump processes)

X Staying Positive Near 0 in probability. Suppose ﬁJr(O—i—) =00

(i) (Doney 2004) if also I (0+) > 0, then the following are
equivalent:

limP(X; >0) =1,

im (Xe >0) =1;

Xt P
W—)OO, as tiO,
t

62=0 and lim é(_x)
0 XM (x)
lim —A(X) = 00;

OV U (x)

(4)

there is a nonstochastic nondecreasing function ¢(x) > 0, which is

slowly varying at 0, such that
X
tl(t)

P
—> 00, as t ] 0.

(5)



thm (X dominating its large jump processes)

(i) Suppose X is spectrally positive, so T (x) = 0 for x > 0.
Then (1) is equivalent to

02 =0 and A(x) > 0 for all small x, (6)

and this happens if and only if X is a subordinator. Furthermore,
we then have A(x) > 0, not only for small x, but for all x > 0.



relative stability & dominance
assume M(0+) > 0.
o (cf Kallenberg (2002)): relative stability (RS): X(t)/b(t) ]

for some measurable nonstochastic function b(t) > 0
iff

fim e(xbe) = 0, lim 0P _ gy, UGB

=0
) tl0 b tl0  b?

o (Griffin & Maller (2013)): there is a measurable nonstochastic
function b; > 0 such that

X
Mi>1, as t ] 0,
by

iff X € RS at 0, equivalently, iff iff X € RS at 0, equivalently, iff

02 =0 and lim ’/LL(X)‘
x40 xIM(x)

= 0



positive relative stability & positive dominance
theorem if ﬁ+(0+) = 00, then the following are equivalent:
X
715(1) N o0, as t ] 0;
(AXT):
X
Tt(l) L oo, as t ] 0;
|AX, |

02 =0 and lim AjX) = 00;
x10 xM(x)

X € PRS at 0;

IimL:oo

O JUG)N(x)

lim XA(x)
xl0 U(x)




domain of attaction to normality
We say X € D(N) at 0 if there are a; € R, b; > 0, such that
(Xe — a¢) /by — N(0,1) as t 1.0
if a; may be taken as 0, we write X € Dy(N)
e (Doney and Maller (2002)) X € D iff lim,j0 &) = o0;

x2M(x)

in fact, D(N) = Do(N) (Maller & Mason (2010));

XeD iff XeDy lim )
x10 x|A(x)| + x2M(x)

corollary[to theorem] if ﬁ+(0+) = 00, then the following are
equivalent:

X € D(N)
V,
there is a nonstochastic function ¢; > 0 such that -t L 1, ast | 0;
Ct
Vi

P
—> 00, as t | 0.
SUPp<s<t ‘AXSP ’




relative stability, attraction to normality & two-sided
dominance

theorem if M(0+) = oo, then the following are equivalent:

| X

~@
[AX: |

P
—> o0, as t ) 0;

x|A(x)| + U(x)
x}0 x2M(x)

- U(x) _ AL
lim —— =+400, or lim—=—"—"=+4o;
x10 x|A(x)] + x2M(x) x10 xT1(x)

X € Do(N) URS at 0




outlook

e talk was based on B.B., Y. Fan, Y. & R.A. Maller (2016).
Distributional Representations and Dominance of a Lévy Process
over its Maximal Jump Processes. Bernoulli 22(4), 2325-2371.

e Yuguang Fan proved NASC convergence of trimmed Levy
processes in the domain of attraction of normal and stable to
trimmed counterparts, including point process versions in her thesis
and/or articles

—Study in trimmed Lévy processes. PhD thesis. ANU.
—Convergence of trimmed Lévy processes to trimmed stable
random variables at 0. To appear in Stoch. Pro. & its Appl..
—Tightness and Convergence of Trimmed Lévy Processes to
Normality at Small Times. To appear in J of Theo Prob.

e current work includes small-time behaviour of extremal processes
(ongoing project with Ross Maller & Ana Feirerra) & extremal
processes as infinite state space Markov processes (ongoing project
with Ross Maller & Sid Resnick) indexed by its order



as usual: finis delectat

Je vous remercie de votre attention!!



