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Maximal Jump Processes. Bernoulli 22(4), 2325–2371.



intro

• we study relations between a Lévy process X = (Xt)t≥0, its
quadratic variation process V = (Vt)t≥0, and its maximal jump
processes, with particular interest in how these processes, and how
positive and negative parts of the X process, interact.
• ratio of the process to its extremes in the random walk situation:
Darling (1952), Arov & Bobrov (1960), Maller & Resnick (1984),
Kesten & Maller ((1992), (1994)); almost sure versions of
sum/max relationships, see Feller (1968), Kesten & Maller (1995),
Pruitt (1987).

• trimmed sums concerning heavy tailed distributions: Csörgő,
Haeusler & Mason (1988), Berkes & Horváth (2010), Berkes,
Horváth & Schauer (2010), and Griffin & Pruitt (2013); Silvestrov
& Teugels (2002) concerns sums and maxima of random walks and
triangular arrays; Ladoucette & Teugels (2013) for an insurance
application; connections to St. Petersburg game: Gut &
Martin-Löf (2014) give a “maxtrimmed” version of the game, while
Fukker, Györfi & Kevei (2015).



intro

• Relevant to our topic, includes that of Doney (2004),
Andrew (2008), Bertoin (1997), Doney (2007)

• identities allow for possible ties in the order statistics of the
jumps. point process versions are motivated by LePage (1980,
1981), LePage, Woodroofe & Zinn (1981), Mori (1984) for
trimmed sums, Khinthine’s inverse Lévy measure method (1937),...
Rosiński (2001) summarises alternative series representations for
Lévy processes.



notation

• let X = (Xt)t≥0 be a real-valued Lévy process with canonical
triplet (γ, σ2,Π) and characteristic function Ee iθXt = etΨ(θ), t ≥ 0,
θ ∈ R, with characteristic exponent

Ψ(θ) := iθγ − 1

2
σ2θ2 +

∫
R∗

(e iθx − 1− iθx1{|x |≤1})Π(dx)

• measures on (0,∞): Π(+) is Π restricted to (0,∞), Π(−) is
Π(−·) restricted to (0,∞), and Π|·| := Π(+) + Π(−)

∆Π(y) := Π{{y}}, y ∈ R∗, and ∆Π(y) := Π(y−)− Π(y), y > 0

• positive, negative and two-sided tails of Π are

Π
+

(x) := Π{(x ,∞)}, Π
−

(x) := Π{(−∞,−x)}, Π(x) := Π
+

(x)+Π
−

(x), x > 0.

Π
←

(x) = inf{y > 0 : Π(y) ≤ x}, x > 0, denotes the
right-continuous inverse of the nonincreasing function
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triplet (γ, σ2,Π) and characteristic function Ee iθXt = etΨ(θ), t ≥ 0,
θ ∈ R, with characteristic exponent

Ψ(θ) := iθγ − 1

2
σ2θ2 +

∫
R∗

(e iθx − 1− iθx1{|x |≤1})Π(dx)

• measures on (0,∞): Π(+) is Π restricted to (0,∞), Π(−) is
Π(−·) restricted to (0,∞), and Π|·| := Π(+) + Π(−)

∆Π(y) := Π{{y}}, y ∈ R∗, and ∆Π(y) := Π(y−)− Π(y), y > 0

• positive, negative and two-sided tails of Π are

Π
+

(x) := Π{(x ,∞)}, Π
−

(x) := Π{(−∞,−x)}, Π(x) := Π
+

(x)+Π
−

(x), x > 0.

Π
←

(x) = inf{y > 0 : Π(y) ≤ x}, x > 0, denotes the
right-continuous inverse of the nonincreasing function



notation

• let X = (Xt)t≥0 be a real-valued Lévy process with canonical
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• interested in small time behaviour of Xt , so assume Π(0+) =∞
or/and Π

+
(0+) =∞

• for r = 1, 2, . . ., let ∆X
(r)
t and ∆̃X

(r)

t be the r th largest positive
jump and the r th largest jump in modulus up to time t respectively

• one-sided and modulus trimmed versions of X are defined as

(r)Xt := Xt −
r∑

i=1

∆X
(i)
t and (r)X̃t := Xt −

r∑
i=1

∆̃X
(i)

t ,

• introduce two families of processes, indexed by v > 0, truncating
jumps from sample paths of Xt and Vt , respectively. let v , t > 0.
if Π(0+) =∞, then set

X̃ v
t := Xt −

∑
0<s≤t

∆Xs 1{|∆Xs |≥Π
←

(v)}

if Π
+

(0+) =∞, then set

X v
t := Xt −

∑
0<s≤t

∆Xs 1{∆Xs≥Π
+,←

(v)}
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representation theorem
assume independent X , Sr , Y +, Y−, and Y ,
where r ∈ N, Sr ∼Gamma(r , 1), Y± = (Y±t )t≥0 and Y = (Yt)t≥0

are independent Poisson processes with EY±1 = EY1 = 1

(i) if Π
+

(0+) =∞, for t, v > 0, let κ(v) := Π
+

(Π
+,←

(v)−)− v ,

and G v
t := Π

+,←
(v)Ytκ(v) then, for t > 0, we have((r)

Xt , , ∆X
(r)
t

) D
=
(
X v
t + G v

t , Π
+,←

(v))
)∣∣

v=Sr/t
.

(ii) if Π(0+) =∞, then ,for t, v > 0, let

κ±(v) :=
(
Π
(
Π
←

(v)−
)
− v
) ∆Π

(
±Π
←

(v)
)

∆Π
(
Π
←

(v)
) 1{∆Π(Π

←
(v))6=0}

G̃ v
t := Π

←
(v)(Y +

tκ+(v)−Y
−
tκ−(v)

)

then, for each t > 0, we have(
(r)X̃t , |∆̃X

(r)

t |
) D

=
(
X̃ v
t + G̃ v

t , Π
←

(v)
)∣∣

v=Sr/t
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order statistics with ties

let X be a Poisson point process (PPP) on [0,∞)× R∗ with
intensity measure ds ⊗ Π(dx)

X =
∑
s

δ(s,∆Xs)

PPPs of positive and negative jumps and jumps in modulus with
intensity measures ds ⊗ Π±,|·|(dx), respectively,

X± =
∑
s

1(0,∞)(±∆Xs)δ(s,±∆Xs)

X|·| = X+ + X− =
∑
s

δ(s,|∆Xs |)

restrict processes to the time interval s ∈ [0, t], t > 0,

Xt(·) := X([0, t]×R∗∩ ·) and X±,|·|t (·) = X±,|·|([0, t]×(0,∞)∩ ·)
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order statistics with ties
assume Π(0+) = Π(0,∞) =∞, Π(x) := Π(0,∞) <∞ and t > 0.

task: specify the points with maximum modulus in Xt .

• let T̃ (1)(Xt) be randomly chosen, independently of (Xt)t≥0,
according to the discrete uniform distribution,

{0 ≤ s ≤ t : |∆X s | = sup
0≤u≤t

|∆X u|}

• define ∆̃X
(1)

t = ∆̃X
(1)

(Xt) := ∆X
T̃ (1)(Xt)

. and maximum

modulus trimmed point process on [0, t]× R∗ by

(1)X̃t := Xt − δ
(T̃ (1)(Xt),∆̃X

(1)

t )

• let r = 2, 3 . . .. iteratively, define T̃ (r)(Xt) := T̃ (1)((r−1)X̃t) and

∆̃X
(r)

t := ∆X
T̃ (r)(Xt)

, and the r–fold trimmed extremal process of

modulus jumps is then defined by

(r)X̃t := Xt −
r∑

i=1

δ
(T̃ (i)(Xt),∆̃X

(r)

t )
.

In a similar way, under the assumption Π
+

(0+) =∞, we can
define the ordered pairs

(T (1)(X+
t ),∆X

(1)
t ), (T (2)(X+

t ),∆X
(2)
t ), (T (3)(X+

t ),∆X
(3)
t ), . . . ∈ [0, t],

such that ∆X
(1)
t ≥ · · · ≥ ∆X

(r)
t are the r th largest order statistics

of positive jumps of X sampled on time interval [0, t]. By
subtracting the points corresponding to large jumps, analogously
as we did for (r)X̃t , we then define the r–fold trimmed extremal
process of positive jumps by

(r)X+
t := X+

t −
∑

1≤i≤r
δ

(T (i)(X+
t ), ∆X

(i)
t )

.
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alternative representation

• let (Ui ), (U′i ) and (Ei ) be independent, where (Ui ) and (U′i ) are
iid sequences of uniform rvs in (0, 1), (Ei ) is i.i.d. sequence of
exponential rvs with parameter EEi = 1.

• Sr =
∑r

i=1 Ei is standard Gamma random walk, r ∈ N.
• for t > 0

Vt :=
∑
i≥1

δ(tUi ,Si/t) and V′t :=
∑
i≥1

δ(tUi , U
′
i ,Si/t)

Vt and V′t are homogeneous PPPs on [0, t]× (0,∞) and
[0, t]× (0, 1)× (0,∞) with intensity measures ds ⊗ dv and
ds ⊗ du′ ⊗ dv , respectively.
• for r ∈ N0 := {0, 1, 2 . . .}, introduce r–fold trimmed
counterparts:

(r)Vt :=
∑
i>r

δ(tUi ,Si/t) and (r)V′t :=
∑
i>r

δ(tUi , U
′
i ,Si/t)
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transformations for Π
+

(0+) =∞

• if Π
+

(0+) =∞ then transform

(I ,Π
+,←

) : [0, t]× (0,∞)→ [0,∞)× (0,∞)

such that

V(I ,Π
+,←

)
t :=

∑
i≥1

δ
(tUi ,Π

+,←
(Si/t))

(r)V(I ,Π
+,←

)
t :=

∑
i>r

δ
(tUi ,Π

+,←
(Si/t))

.



transformations for Π(0+) =∞
• introduce transformation

(I , I ,Π
←

) : [0, t]× (0, 1)× (0,∞)→ [0, t]× (0, 1)× (0,∞)

• with Radon-Nikodym dΠ± = g±dΠ|·| write
g± : (0,∞)→ (0,∞) with g+ + g− ≡ 1 and dΠ± = g±dΠ|·|

returning signs by m : [0, t]× (0, 1)× (0,∞)→ [0, t]× R∗

m(s, u′, x) :=

{
(s, x) , if u′ < g+(x)

(s,−x) , if u′ ≥ g+(x)

• map:
V′t

(I ,I ,Π
←

)−→ V′(I ,I ,Π
←

)
t :=

∑
i≥1

δ(tUi ,U
′
i ,Π
←

(Si/t))

m−→ V′m◦(I ,I ,Π
←

)
t :=

∑
i≥1

δm(tUi ,U
′
i ,Π
←

(Si/t))
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lemma
let t > 0 and r ∈ N.
(i) if Π

+
(0+) =∞, then

X+
t

D
= V(I ,Π

+,←
)

t(
T (i)(X+

t ),∆X
(i)
t

)
i≥1

D
=

(
tUi ,Π

+,←
(Si/t)

)
i≥1{(

T (i)(X+
t ),∆X

(i)
t

)
1≤i≤r ,

(r)X+
t

} D
=

{
(
tUi ,Π

+,←
(Si/t)

)
1≤i≤r ,

(r)V(I ,Π
+,←

)
t }.

(ii) if Π(0+) =∞, then

Xt
D
= V′m◦(I ,I ,Π

←
)

t(
T̃ (i)(Xt), ∆̃X

(i)

t

)
i≥1

D
=

(
m
(
tUi ,U

′
i ,Π
←

(Si/t)
))

i≥1{(
T̃ (i)(Xt), ∆̃X

(i)

t

)
1≤i≤r ,

(r)X̃t

} D
={(

m(tUi ,U
′
i ,Π
←

(Si/t))
)

1≤i≤r ,
(r)V′m◦(I ,I ,Π

←
)

t

}
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representation theorem (PPP)
assume X, (Ui ), (U′i ), Sr , Y± = (Y±(t))t≥0, Y = (Y (t))t≥0, are
independent, with Y± and Y standard Poisson processes.

for x > 0 delete points in X+
t and Xt not lying in [0, t]× (0, x) and

[0, t]× (−x , x)∗:

X+·<x
t := X+([0, t]×(0, x)∩ · ) and X|·|<x

t := X([0, t]×(−x , x)∗∩ · ).

(i) if Π
+

(0+) =∞, then for all t > 0, r ∈ N,

κ(v) = Π
+

(Π
+,←

(v)−)− v

(
∆X

(r)
t , (r)X+

t

) D
=

(
Π

+,←
(v), X+·<Π

+,←
(v)

t +

Y (tκ(v))∑
i=1

δ
(tUi , Π

+,←
(v))

)
v=Sr/t

,

(ii) if Π(0+) =∞ then, for all t > 0, r ∈ N,(
|∆̃X

(r)

t |, (r)X̃t

)
D
=
(
Π
←

(v),X|·|<Π
←

(v)
t +

Y +(tκ+(v))∑
i=1

δ(tUi ,Π
←

(v))+

Y−(tκ−(v))∑
i=1

δ(tU′i ,−Π
←

(v))

)
v=Sr/t
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representation theorem (LP revisited)
assume independent X , Sr , Y +, Y−, and Y ,
where r ∈ N, Sr ∼Gamma(r , 1), Y± = (Y±t )t≥0 and Y = (Yt)t≥0

are independent Poisson processes with EY±1 = EY1 = 1.

(i) if Π
+

(0+) =∞, for t, v > 0, let κ(v) := Π
+

(Π
+,←

(v)−)− v ,

and G v
t := Π

+,←
(v)Ytκ(v) then, for t > 0, we have((r)

Xt , ∆X
(r)
t

) D
=
(
X v
t + G v

t , Π
+,←

(v)
)∣∣

v=Sr/t

(ii) if Π(0+) =∞, then ,for t, v > 0, let

κ±(v) :=
(
Π
(
Π
←

(v)−
)
− v
) ∆Π

(
±Π
←

(v)
)

∆Π
(
Π
←

(v)
) 1{∆Π(Π

←
(v))6=0}

G̃ v
t := Π

←
(v)(Y +

tκ+(v)−Y
−
tκ−(v)

)

then, for each t > 0, we have(
(r)X̃t , |∆̃X

(r)

t |
) D

=
(
X̃ v
t + G̃ v

t , Π
←

(v)
)∣∣

v=Sr/t



X comparable with its large jump processes

theorem suppose σ2 = 0 and Π(0+) =∞. then

Xt

∆̃X
(1)

t

P−→ 1, as t ↓ 0,

iff Π(x) ∈ SV at 0 (so that X is of bounded variation) and X has
drift 0. These imply

(∗) |∆̃X
(2)

t |

|∆̃X
(1)

t |

P−→ 0, as t ↓ 0;

and conversely (*) implies Π(x) ∈ SV at 0



X comparable with its large jump processes-(one-sided
version)

theorem suppose Π
+

(0+) =∞. then

Xt

∆X
(1)
t

P−→ 1, as t ↓ 0

iff Π
+

(x) ∈ SV at 0, X is of bounded variation with drift 0, and

limx↓0 Π
−

(x)/Π
+

(x) = 0.



comparing positive & negative jumps

define ∆X+
t := max(∆Xt , 0), ∆X−t := max(−∆Xt , 0), and

(∆X+)
(1)
t := sup

0<s≤t
∆X+

s and (∆X−)
(1)
t := sup

0<s≤t
∆X−s , t > 0.

positive and negative jump processes are independent.
when the integrals are finite, define

A±(x) :=

∫ x

0
Π
±

(y)dy = x

∫ 1

0
Π
±

(xy)dy .



theorem (comparing positive & negative jumps)
Suppose Π

±
(0+) =∞. For (1) assume

∑
0<s≤t ∆X−s is finite a.s.,

and for (2) assume
∑

0<s≤t ∆X+
s is finite a.s. For (3), assume

both are finite a.s. Then

(1)

∑
0<s≤t ∆X−s

sup0<s≤t ∆X+
s

P−→ 0, as t ↓ 0 if and only if lim
x↓0

∫ x
0 Π
−

(y)dy

xΠ
+

(x)
= 0;

also

(2)
sup0<s≤t ∆X−s∑

0<s≤t ∆X+
s

P−→ 0, as t ↓ 0, if and only if lim
x↓0

xΠ
−

(x)∫ x
0 Π

+
(y)dy

= 0;

and

(3)

∑
0<s≤t ∆X−s∑
0<s≤t ∆X+

s

P−→ 0, as t ↓ 0, if and only if lim
x↓0

∫ x
0 Π
−

(y)dy∫ x
0 Π

+
(y)dy

= 0.

Finally,

sup0<s≤t ∆X−s
sup0<s≤t ∆X+

s

P−→ 0, as t ↓ 0, if and only if lim
x↓0

Π
−

(εx)

Π
+

(x)
= 0 for all ε > 0.



X dominating its large jump processes
versions of truncated first and second moment functions:

ν(x) = γ−
∫
x<|y |≤1

yΠ(dy) and V (x) = σ2+

∫
0<|y |≤x

y2Π(dy), x > 0.

variants of ν(x) and V (x) are Winsorised first and second:

A(x) = γ + Π
+

(1)− Π
−

(1)−
∫ 1

x
(Π

+
(y)− Π

−
(y))dy

and

U(x) = σ2 + 2

∫ x

0
yΠ(y)dy , for x > 0.

A(x) and U(x) are continuous for x > 0.
using Fubini’s theorem,

A(x) = ν(x) + x(Π
+

(x)− Π
−

(x))

and

U(x) = V (x) + x2(Π
+

(x) + Π
−

(x)) = V (x) + x2Π(x)
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∫
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thm (X dominating its large jump processes)
X Staying Positive Near 0 in probability. Suppose Π

+
(0+) =∞.

(i) (Doney 2004) if also Π
−

(0+) > 0, then the following are
equivalent:

lim
t↓0

P(Xt > 0) = 1; (1)

Xt

(∆X−)
(1)
t

P−→∞, as t ↓ 0; (2)

σ2 = 0 and lim
x↓0

A(x)

xΠ
−

(x)
=∞; (3)

lim
x↓0

A(x)√
U(x)Π

−
(x)

=∞; (4)

there is a nonstochastic nondecreasing function `(x) > 0, which is
slowly varying at 0, such that

Xt

t`(t)
P−→∞, as t ↓ 0. (5)



thm (X dominating its large jump processes)

(ii) Suppose X is spectrally positive, so Π
−

(x) = 0 for x > 0.
Then (1) is equivalent to

σ2 = 0 and A(x) ≥ 0 for all small x , (6)

and this happens if and only if X is a subordinator. Furthermore,
we then have A(x) ≥ 0, not only for small x , but for all x > 0.



relative stability & dominance
assume Π(0+) > 0.

• (cf Kallenberg (2002)): relative stability (RS): X (t)/b(t)
P−→ ±1

for some measurable nonstochastic function b(t) > 0
iff

lim
t↓0

tΠ(xbt) = 0 , lim
t↓0

tA(xbt)

bt
= ±1 , lim

t↓0

tU(xbt)

b2
t

= 0

• (Griffin & Maller (2013)): there is a measurable nonstochastic
function bt > 0 such that

|Xt |
bt

P−→ 1, as t ↓ 0,

iff X ∈ RS at 0, equivalently, iff iff X ∈ RS at 0, equivalently, iff

σ2 = 0 and lim
x↓0

|A(x)|
xΠ(x)

=∞



positive relative stability & positive dominance
theorem if Π

+
(0+) =∞, then the following are equivalent:

Xt

(∆X+)
(1)
t

P−→∞, as t ↓ 0;

Xt

|∆̃X
(1)

t |

P−→∞, as t ↓ 0;

σ2 = 0 and lim
x↓0

A(x)

xΠ(x)
=∞;

X ∈ PRS at 0;

lim
x↓0

A(x)√
U(x)Π(x)

=∞;

lim
x↓0

xA(x)

U(x)
=∞.



domain of attaction to normality
We say X ∈ D(N) at 0 if there are at ∈ R, bt > 0, such that

(Xt − at)/bt
D−→ N(0, 1) as t ↓ 0

if at may be taken as 0, we write X ∈ D0(N)

• (Doney and Maller (2002)) X ∈ D iff limx↓0
U(x)

x2Π(x)
=∞;

in fact, D(N) = D0(N) (Maller & Mason (2010));

X ∈ D iff X ∈ D0 lim
x↓0

U(x)

x |A(x)|+ x2Π(x)
=∞

corollary[to theorem] if Π
+

(0+) =∞, then the following are
equivalent:

X ∈ D(N)

there is a nonstochastic function ct > 0 such that
Vt

ct

P−→ 1, as t ↓ 0;

Vt

sup0<s≤t |∆X s |2
P−→∞, as t ↓ 0.



relative stability, attraction to normality & two-sided
dominance

theorem if Π(0+) =∞, then the following are equivalent:

|Xt |

|∆̃X
(1)

t |

P−→∞, as t ↓ 0;

lim
x↓0

x |A(x)|+ U(x)

x2Π(x)
=∞;

lim
x↓0

U(x)

x |A(x)|+ x2Π(x)
= +∞, or lim

x↓0

|A(x)|
xΠ(x)

= +∞;

X ∈ D0(N) ∪ RS at 0



outlook

• talk was based on B.B., Y. Fan, Y. & R.A. Maller (2016).
Distributional Representations and Dominance of a Lévy Process
over its Maximal Jump Processes. Bernoulli 22(4), 2325–2371.

• Yuguang Fan proved NASC convergence of trimmed Levy
processes in the domain of attraction of normal and stable to
trimmed counterparts, including point process versions in her thesis
and/or articles
—Study in trimmed Lévy processes. PhD thesis. ANU.
—Convergence of trimmed Lévy processes to trimmed stable
random variables at 0. To appear in Stoch. Pro. & its Appl..
—Tightness and Convergence of Trimmed Lévy Processes to
Normality at Small Times. To appear in J of Theo Prob.

• current work includes small-time behaviour of extremal processes
(ongoing project with Ross Maller & Ana Feirerra) & extremal
processes as infinite state space Markov processes (ongoing project
with Ross Maller & Sid Resnick) indexed by its order



as usual: finis delectat

Je vous remercie de votre attention!!


