Recent developments in random affine and affine like recursions

Ewa Damek (University of Wrocław) (based on the joint work with Dariusz Buraczewski - University of Wrocław,

> Levy 2016 Angers, July 26, 2016

Let $(A_n, B_n) \in \mathbb{R} \times \mathbb{R}$ be an i.i.d. sequence. We consider the Markov chain

$$X_n = A_n X_{n-1} + B_n = (A_n, B_n) \circ X_{n-1},$$

 X_0 - initial distribution. Then

$$X_n = (A_n, B_n) \circ \ldots \circ (A_1, B_1) \circ X_0,$$

 X_n is called a forward process. Notice that if

$$R_n = (A_1, B_1) \circ \ldots \circ (A_n, B_n) \circ X_0$$

then $X_n =_d R_n$ in law. R_n is called a backward process.

Existence of a stationary distribution

Assume $\mathbb{E} \log |A_1| < 0$ and $\mathbb{E} \log^+ |B_1| < \infty$.

$$R_n = (A_1, B_1) \circ \dots \circ (A_n, B_n) \circ X_0$$

= $B_1 + A_1 B_2 + A_1 A_2 B_3 + \dots + A_1 \dots A_{n-1} B_n$

Then R_n converges a.s. to

$$R = \sum_{k=1}^{\infty} A_1 \dots A_{k-1} B_k = B_1 + A_1 \sum_{k=2}^{\infty} A_2 \dots A_{k-1} B_k = B_1 + A_1 (R \circ \theta).$$

Since $X_n =_d R_n$, the process X_n converges in distribution to R and

$$R =_d AR + B,$$
 $(A, B) \perp R$

Then ν - the law of R, is the stationary distribution of $\{X_n\}$.

Generalized Orstein-Uhlenbeck process

Bivariate Lévy process

$$(\xi,\eta)=(\xi_t,\eta_t)_{t\geq 0}$$

Generalized Orstein-Uhlenbeck process

$$V_t = e^{-\xi_t} \Big(\int_0^t e^{\xi_{s-1}} d\eta_s + V_0 \Big),$$

 V_0 the starting random variable independent of (ξ, η) . For every $h > 0, n \in N$

$$V_{nh} =_d A_h V_{(n-1)h} + B_h,$$

where

$$(A_h, B_h) =_d \left(e^{-\xi_h}, e^{-\xi_h} \int_0^h e^{\xi_{s-}} d\eta_s \right)$$

Generalized Orstein-Uhlenbeck process

$$V_{nh} =_d A_h V_{(n-1)h} + B_h,$$

where

$$(A_h, B_h) =_d \left(e^{-\xi_h}, e^{-\xi_h} \int_0^h e^{\xi_{s-}} d\eta_s \right)$$

$$\begin{aligned} V_{nh} &= e^{-\xi_{nh}} \Big(\int_{0}^{nh} e^{\xi_{s-}} d\eta_{s} + V_{0} \Big) \\ &= e^{-(\xi_{nh} - \xi_{(n-1)h})} e^{-\xi_{(n-1)h}} \Big(V_{0} + \int_{0}^{(n-1)h} e^{\xi_{s-}} d\eta_{s} + \int_{(n-1)h}^{nh} e^{\xi_{s-}} d\eta_{s} \Big) \\ &= e^{-(\xi_{nh} - \xi_{(n-1)h})} V_{(n-1)h} + e^{-(\xi_{nh} - \xi_{(n-1)h})} \int_{(n-1)h}^{nh} e^{\xi_{s-} - \xi_{(n-1)h}} d\eta_{s} \end{aligned}$$

Stationary distribution for GOU

$$V_{nh} = A_h V_{(n-1)h} + B_h,$$

where

$$egin{aligned} & (A_h,B_h) = \left(e^{-\xi_h},e^{-\xi_h}\int_0^h e^{\xi_{s-}} d\eta_s
ight) \ & V = \left(\int_0^\infty e^{-\xi_{s-}} d\eta_s + V_0
ight) \end{aligned}$$

For every *h*

$$V =_d A_h V + B_h$$

Necessary and sufficient conditions for existence of V were given by A.Behme, A.Lindner and R.Maller in 2011. More can be said if, on top of $\mathbb{E} \log |A| < 0$, we assume additionally that for some $\alpha > 0$,

$$\mathbb{E}|A|^{lpha} = 1, \quad \mathbb{E}|B|^{lpha} < \infty$$
 (1)

Then for every $\mathbf{0} < \beta < \alpha$

$$\mathbb{E}|A|^{eta} < 1$$

because $|A| \neq const.$ In particular, for $\beta < \alpha, \beta \leq 1$

$$\mathbb{E}|R|^{\beta} = \mathbb{E}|\sum_{i=1}^{\infty} A_1 \dots A_{i-1}B_i|^{\beta} \leq \sum_{i=1}^{\infty} (\mathbb{E}|A_1|^{\beta})^{i-1}\mathbb{E}|B_i|^{\beta} < \infty$$

No moment of order α . $R =_d AR + B$.

$$R = \sum_{k=1}^{\infty} A_1 \dots A_{k-1} B_k$$
 is a unique solution of

$$R =_d AR + B,$$
 $(A, B) \perp R$

Theorem (Kesten 73, Grincevicius 75, Goldie 91) If $\mathbb{E} \log |A| < 0$, $\mathbb{E} |A|^{\alpha} = 1$ for some $\alpha > 0$, $0 < m_{\alpha} = \mathbb{E} |A|^{\alpha} \log |A| < \infty$, $\mathbb{E} |B|^{\alpha} < \infty$ and $\log |A|$ conditioned on $A \neq 0$ is non arithmetic, then

$$\mathbb{P}[R > t] \sim C_+ t^{-lpha}, \quad \mathbb{P}[R < -t] \sim C_- t^{-lpha}$$

and $C_+ + C_- > 0$ or R is constant. $\mathbb{P}[A < 0] > 0$ implies $C_+ = C_-$.

Later on we always assume $\mathbb{P}[Ax + B = x] < 1$, for every $x \in \mathbb{R}$ which is equivalent to $C_+ + C_- > 0$.

 ν doesn't have atoms but it may be singular. In the case $A \ge 0$ the support of ν is $\mathbb{R} = (-\infty, \infty)$ or a half line:

•
$$\mathrm{supp}\nu=[c,\infty)$$
 and $C_+>0$

- $\mathrm{supp}\nu=(-\infty,c]$ and $\mathit{C}_{-}>0$
- $\mathrm{supp}\nu=\mathbb{R}$ and $\mathit{C}_+,\mathit{C}_->0$

Summarize $C_+ > 0$ iff $[c, \infty) \subset \mathrm{supp}\nu$

Theorem (Guivarc'h, Le Page)

Suppose that the assumptions of the Kesten-Goldie theorem are satisfied and R is unbounded at ∞ . Then there is $\epsilon > 0$ such that

 $\mathbb{P}[R > t] > \epsilon t^{-\alpha}$

Very simple proof by Buraczewski and Damek.

$$\mathbb{X}_n = \Psi_n(\mathbb{X}_{n-1})$$

 Ψ_n random, Lipschitz

$$\Psi(x) \ge Ax + B,\tag{2}$$

Theorem (Buraczewski, Damek)

Suppose that (A, B) satisfies assumptions of the Kesten-Goldie theorem and Ψ satisfies natural regularity assumptions. If the stationary solution \mathbb{X} is unbounded at ∞ then there is $\epsilon > 0$ such that

$$\mathbb{P}[\mathbb{X} > t] > \epsilon t^{-\alpha}$$

For applications "so called Letac model"

$$\tilde{X}_n = B_n + A_n \max{\{\tilde{X}_{n-1}, C_n\}} = \max{\{A_n \tilde{X}_{n-1} + B_n, A_n C_n + B_n\}}, \quad n \ge 1.$$

is important.

In applications we immediately go beyond R = AR + BThe ruin problem (of an insurance company)

$$\mathbb{P}[\sup_{n} \sum_{j=1}^{n} A_{1} \cdots A_{j-1} B_{j} > t] = \mathbb{P}[M = \sup_{n} R_{n} > t]$$
(3)
$$M =_{d} \max\{AM + B, 0\}$$
(4)
$$\tilde{X}_{n} = \max\{A_{n} \tilde{X}_{n-1} + B_{n}, 0\}, \quad n \ge 1.$$
$$A_{n} C_{n} + B_{n} = 0$$

 $R =_d AR + B$, ν -law of R, μ - law of (A, B).

 $\mathbb{E} \log A < 0$, there is $\alpha > 0$ such that $\mathbb{E}A^{\alpha} = 1$, $\mathbb{P}[Ax + B = x] < 1$ imply that $\mathrm{supp}\nu$ unbounded.

supp ν is invariant under the action of $\operatorname{supp}\mu$, $x \in \operatorname{supp}\nu$ $(a, b) \circ x = ax + b \in \operatorname{supp}\nu$ $\mathbb{P}[A > 1] > 0$, $\operatorname{supp}\nu \neq \{x\}$ $(a, b) \in \operatorname{supp}\mu$, a > 1, $x \neq y$, $x, y \in \operatorname{supp}\nu$. $|(a, b)^n \circ x - (a, b)^n \circ y| = a^n |x - y| \to \infty$

Support

 μ -law of (A, B), ν -law of R, $\mathbb{P}[A = 0] = 0$.

$$\operatorname{supp} \nu = \overline{\left\{\frac{b}{1-a}: (a,b) \in \operatorname{supp} \bigcup_{n=1}^{\infty} \mu^{*n}, \ a < 1\right\}}$$

Guivarc'h, $\operatorname{supp}\nu$ does not depend on μ but only on $\operatorname{supp}\mu$. $\frac{b}{1-a}$ is the unique fixed point of ax + b = x

If $x \in \operatorname{supp}\nu$, $(a, b) \in \mu$, a > 1, $\frac{b}{1-a} < x$ then $[x, \infty) \subset \operatorname{supp}\nu$. If $x \in \operatorname{supp}\nu$, $(a, b) \in \mu$, a > 1, $x < \frac{b}{1-a}$ then $(-\infty, x] \subset \operatorname{supp}\nu$.

Invariance of the support of ν allows to generate a lot of points see the book by Buraczewski, Damek, Mikosch *Stochastic Models with Power-Law Tails. The Equation* X = AX + B $\operatorname{supp}\nu = \mathbb{R}$ or a half line

Support

 $(a_1,b_1),(a_2,b_2)\in \mathrm{supp}\mu$, $a_1>1,a_2<1$, μ -law of (A,B) If

$$\frac{b_1}{1-a_1} < \frac{b_2}{1-a_2}$$

then

$$\Big[\frac{b_2}{1-a_2},\infty\Big)\subset \mathrm{supp}\nu$$

If $\mathbb{P}[A = 1, B > 0] > 0$ then

$$\Big[\frac{b_2}{1-a_2},\infty\Big)\subset \mathrm{supp}\nu$$

If $\mathbb{P}[A=1,B>0]=0$ for every $(a_1,b_1),(a_2,b_2)\in \mathrm{supp}\mu$, $a_1>1,a_2<1$

$$\frac{b_1}{1-a_1} > \frac{b_2}{1-a_2}$$

then

$$\mathrm{supp}\nu = (-\infty, c]$$

$$\tilde{X}_n = B_n + A_n \max{\{\tilde{X}_{n-1}, C_n\}} = \max{\{A_n \tilde{X}_{n-1} + B_n, A_n C_n + B_n\}}, \quad n \ge 1.$$

 $X'_n = \max{\{A_n X'_{n-1} + B_n, 0\}}, \quad n \ge 1.$

$$ilde{X}_n \ge X_n, \quad X'_n \ge X_n.$$
 (5)

Under assumptions of Goldie-Kesten Theorem plus $\mathbb{E}[A^{\alpha}|C|^{\alpha}] < \infty$, Goldie proved that

$$\mathbb{P}[ilde{X} > t] \sim \mathcal{C}_L t^{-lpha} \qquad ext{ as } t o \infty,$$

but no characterization of positivity of C_L . Some sufficient conditions in Goldie, and in Collamore, Vidyashankar.

Letac recursion

$$\tilde{X}_n = B_n + A_n \max\left\{\tilde{X}_{n-1}, C_n\right\}$$

Theorem (Buraczewski, Damek)

Suppose that the assumptions of the Kesten-Goldie theorem are satisfied and $\tilde{X}(X')$ is unbounded at ∞ . Then there is $\epsilon > 0$ such that

 $\mathbb{P}[\tilde{X} > t] > \epsilon t^{-\alpha}$

 \tilde{X} is unbounded at ∞ if either $\mathbb{P}[A = 1, B > 0] > 0$ or $\mathbb{P}[A = 1, B > 0] = 0$ and $N_3 < \max\{N_1, N_2\}$.

$$\mathbb{X}_n = \Psi_n(\mathbb{X}_{n-1})$$

 Ψ_n random, Lipschitz, $\mathbb{E} \log Lip(\Psi) < 0$

$$Ax - B \le \Psi(x) \le Ax + B,$$
 (7)

Theorem (Buraczewski, Damek, Mirek)

Suppose that (A, B) satisfies assumptions of the Kesten-Goldie theorem and Ψ satisfies natural regularity assumptions. Then for the stationary solution X we have (Mirek, 2011)

$$\lim_{t\to\infty}t^{lpha}\mathbb{P}(\mathbb{X}>t)=C_+,\ \lim_{t\to\infty}t^{lpha}\mathbb{P}(\mathbb{X}<-t)=C_-.$$

If \mathbb{X} is unbounded at ∞ then $C_+ > 0$ (Buraczewski, Damek).

Second recursion

$$X_{n+1} = A_{n+1}X_n + B_n$$
$$\tilde{X}_{n+1} = A_{n+1}\tilde{X}_n + \tilde{B}_n$$
$$\tilde{B}_{n+1} = \min(-1, B_n)$$
$$X_0 = \tilde{X}_0 = 0$$

$$\sup \tilde{R} \subset (-\infty, 0]$$
$$\mathbb{P}[\tilde{R} < t]t^{\alpha} \to \tilde{C}_{-} > 0$$
$$R_{n} \ge \tilde{R}_{n} \ge \tilde{R}$$
$$\sum_{j=1}^{n} A_{1} \cdots A_{j-1} B_{j} \ge \sum_{j=1}^{n} A_{1} \cdots A_{j-1} \tilde{B}_{j} \ge \sum_{j=1}^{\infty} A_{1} \cdots A_{j-1} \tilde{B}_{j}$$

A lemma

$$M = \max_{n} \prod_{n}, \ \prod_{n} = A_{1} \cdots A_{n}$$
$$\lim_{t \to \infty} \mathbb{P}[M > t] t^{\alpha} = c_{1} > 0.$$

Lemma

Let $U_n = \{\Pi_n > t, \tilde{R}_n > -Ct\}$. Then there is D > 0 such that $\mathbb{P}[\bigcup_n U_n] \ge \frac{c_1}{4}t^{-\alpha}.$

Not that surprising because

$$\mathbb{P}[\tilde{R}_n \leq -Ct] \leq \mathbb{P}[\tilde{R} \leq -Ct] \leq \tilde{C}_{-}C^{-\alpha}t^{-\alpha}$$

$$\mathbb{P}\Big[\bigcup_{n} \{\Pi_{n} > t, R_{n} > -Ct\}\Big] \ge \frac{c_{1}}{4}t^{-\alpha}$$
$$\mathbb{P}[R \circ \theta^{n} > C+1] = \eta > 0, \quad R \text{ unbounded}$$

$$\begin{split} \mathbb{P}[\Pi_n > t, R_n > -Ct] \mathbb{P}[R \circ \theta^n > C+1] \\ = \mathbb{P}[\Pi_n > t, R_n > -Ct, R \circ \theta^n > C+1] \end{split}$$

 $R = R_n + \prod_n R(\theta^n \omega) > -Ct + (C+1)t = t$

In the case $A \ge 0$ the support of ν is $\mathbb{R} = (-\infty, \infty)$ or a half line: $C_+ > 0$ iff $[c, \infty) \subset \mathrm{supp}\nu$

Theorem (Guivarc'h, Le Page)

Suppose that the assumptions of the Kesten-Goldie theorem are satisfied: $\mathbb{E} \log |A| < 0$, $\mathbb{E}|A|^{\alpha} = 1$ for some $\alpha > 0$, $0 < m_{\alpha} = \mathbb{E}|A|^{\alpha} \log |A| < \infty$, $\mathbb{E}|B|^{\alpha} < \infty$ and R is unbounded at ∞ . Then there is $\epsilon > 0$ such that

$$\mathbb{P}[R > t] > \epsilon t^{-\alpha}$$

Proof

$$\frac{c_1}{2}t^{-\alpha} \leq \mathbb{P}[M > t] = \mathbb{P}(\bigcup_n \{\Pi_n > t\})$$

$$= \mathbb{P}(\bigcup_n \{\Pi_n > t \text{ and } \tilde{R} \leq -Ct\})$$

$$+ \mathbb{P}(\bigcup_n \{\Pi_n > t \text{ and } \tilde{R} > -Ct\})$$

$$\leq \mathbb{P}[\tilde{R} \leq -Ct] + \mathbb{P}(\bigcup_n \{\Pi_n > t \text{ and } \tilde{R} > -Ct\})$$

$$\leq \frac{2\tilde{C}_{-}}{C^{\alpha}}t^{-\alpha} + \mathbb{P}(\bigcup_n \{\Pi_n > t \text{ and } \tilde{R}_n > -Ct\})$$

$$\leq \frac{2\tilde{C}_{-}}{C^{\alpha}}t^{-\alpha} + \mathbb{P}[\bigcup_n U_n]$$

$$R = \sum_{j=1}^{\infty} A_1 \cdots A_{j-1} B_j$$
$$\sum_{j=1}^{\infty} A_1 \cdots A_{j-1} B_j + A_1 \cdots A_n \sum_{j=n+1}^{\infty} A_{n+1} \cdots A_{j-1} B_j$$
$$= R_n + \prod_n (R \circ \theta^n)$$

Proof

$$\mathbb{P}[R > C+1] = \eta > 0 \quad R \text{ unbounded}$$

$$\frac{C_1}{4}t^{-\alpha}\eta \le \eta \mathbb{P}[\bigcup_n U_n]$$

$$\eta \mathbb{P}[\bigcup_n U_n \cap (\bigcup_{k=1}^{n-1} U_k)^c] \text{ disjoint}$$

$$= \sum_{n=1}^{\infty} \mathbb{P}[\bigcup_n U_n \cap (\bigcup_{k=1}^{n-1} U_k)^c] \mathbb{P}[R(\theta^n \omega) > C+1]$$

$$= \sum_{n=1}^{\infty} \mathbb{P}[\bigcup_n U_n \cap (\bigcup_{k=1}^{n-1} U_k)^c \cap \{R(\theta^n \omega) > C+1\}]$$

$$\le \mathbb{P}(R > t)$$

Proof

$$U_n \cap \left(\bigcup_{k=1}^{n-1} U_k\right)^c \cap \{R(\theta^n \omega) > C+1\}$$
$$\Pi_n \ge t, \tilde{R}_n > -Ct, R(\theta^n \omega) > C+1$$
$$R_n > -Ct$$
$$R = R_n + \Pi_n R(\theta^n \omega) > -Ct + (C+1)t = t$$

$$U_n \cap \big(\bigcup_{k=1}^{n-1} U_k\big)^c \cap \{R(\theta^n \omega) > C+1\}$$
$$\subset \{R > t\} \cap U_n \cap \big(\bigcup_{k=1}^{n-1} U_k\big)^c \text{ disjoint}$$