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Random affine recursion

Let (An, By) € R X R be an i.i.d. sequence. We consider the
Markov chain

Xn = AnXn—1+ By = (An, By) 0 X1,
Xo - initial distribution. Then

Xn = (An, Bp) o...0 (A1, B1) o Xo,
X, is called a forward process. Notice that if

Ry, = (A1,B1) o ...0(Ap, By) o Xo

then X, =4 R, in law. R, is called a backward process.



Existence of a stationary distribution

Assume Elog |A;| < 0 and Elog™ |B| < oo .

Rn = (Al,Bl)O...O(An,Bn)OXO
= Bi+AiB+ AiABs+ ...+ A1..A_1B,

Then R, converges a.s. to

R=> Ai... A 1B = Bi+A1 > _ Ay... Ac_1Bi = Bi+Ai(Rob).
k=1 k=2

Since X,, =4 R, the process X,, converges in distribution to R and
R =4 AR + B, (A,B) LR

Then v - the law of R, is the stationary distribution of {X,}.



Generalized Orstein-Uhlenbeck process

Bivariate Lévy process

(&,m) = (&6, me) =0

Generalized Orstein-Uhlenbeck process
t
Ve=e & ( [ e dno+ ).
0

Vo the starting random variable independent of (£, 7). For every
h>0,neN
Vioh =d AnV(n-1)n + B,

where

h
(Ah, Bh) =4 (e—ﬁh’ e—£h/ efsf dns)
0



Generalized Orstein-Uhlenbeck process

Voh =d AnV(n-1)n + Bh,
where

h
(Ah, Bh) =, (e—ﬁh’ e—§h/ efs— dns)
0

nh
Vop = e_g"”(/ e~ dns + Vo)
0
(n—1)h nh
— e_(ﬁnh_f(nfl)h)e_s(n—l)h(VO_|_/ eSs— d7]s+/ ebs— d775>
0 (n—1)h

nh
— e_(fnh_f(nfl)h)v(n_l)h T e_(gnh_f(n—l)h)/ efs——€(n—1)n dns
(n—1)h



Stationary distribution for GOU

Vioh = AnV(n—1)n + Bh,

where
h
(An, Bp) = (e_g”,e_s”/ et dm)
0
V = (/0 e & dns + Vo)
For every h
V =4 ApV + By

Necessary and sufficient conditions for existence of V' were given
by A.Behme, A.Lindner and R.Maller in 2011.



More can be said if, on top of Elog|A| < 0, we assume
additionally that for some o > 0,

E|A“ =1, E|B|* < (1)
Then for every 0 < 6 < «
E|A)® < 1

because |A| # const. In particular, for 5 < a, 8 <1

EIRP =E|> Ar...Ai_1Bi’ <D (E|AP)'E[Bi|® < oo
i=1 i=1

No moment of order a. R=4 AR+ B.



R =>3%21A1...Ak_1Bx is a unique solution of
R=4 AR+ B, (A,B) LR

Theorem (Kesten 73, Grincevicius 75, Goldie 91)

If Elog|A| <0, E|A|* =1 for some a > 0,

0 < my = E|A|*log|A] < o0, E|B|* < 0o and log |A| conditioned
on A # 0 is non arithmetic, then

PR>t]~ Cit™®, PR<—t]~C_t™ ¢

and C; + C_ > 0 or R is constant. P[A < 0] > 0 implies C; = C_.

Later on we always assume P[Ax + B = x| < 1, for every x € R
which is equivalent to C; + C_ > 0.



v doesn't have atoms but it may be singular. In the case A >0
the support of v is R = (—o0,00) or a half line:

@ suppr = [c,00) and C; >0

@ suppr = (—oo,c] and C_ >0

@ suppr =R and C,C_ >0
Summarize C; > 0 iff [c, 00) C suppr

Theorem (Guivarc'h, Le Page)

Suppose that the assumptions of the Kesten-Goldie theorem are
satisfied and R is unbounded at co. Then there is € > 0 such that

PR > t] > et™ @

Very simple proof by Buraczewski and Damek.



Lipschitz recursions

Xn - wn(Xn—l)

WV, random, Lipschitz

V(x) > Ax + B, (2)

Theorem (Buraczewski, Damek)

Suppose that (A, B) satisfies assumptions of the Kesten-Goldie
theorem and V satisfies natural regularity assumptions. If the
stationary solution X is unbounded at co then there is € > 0 such
that

PX > t] >et™®

For applications “so called Letac model”
X, = B,+A, max {5(,7_1, C,} = max {A,,)~<,,_1+B,,, AnCh+Bp}, n>1.

is important.



Why Lipschitz

In applications we immediately go beyond R = AR+ B
The ruin problem (of an insurance company)

Plsup Y A1+ Aj_1B; > t] = P[M = sup R, > t] (3)
n J:]- n
M =4 max{AM + B, 0} (4)
X, = max {A,,)~(,,_1 + Bp, 0}, n>1.
A,Ch4+B,=0



R =4 AR+ B, v -law of R, p - law of (A, B).

Elog A <0, there is & > 0 such that EA* =1, P[Ax+ B =x| <1
imply that suppv unbounded.

suppv is invariant under the action of suppu, x € suppr
(a,b) o x = ax + b € suppv

P[A > 1] > 0, suppr # {x}
(a,b) € suppp, a>1, x #y, x,y € suppv.

|(a,6)" 0 x —(a,b)" 0 y| = a"|x — y| = o0



w -law of (A, B), v -law of R, P[A = 0] = 0.

(o]
suppy = {iba : (a, b) € supp U pnoa < 1}
n=1

Guivarc'h, suppr does not depend on g but only on suppp.

1Tba is the unique fixed point of ax + b = x

If x € suppv, (a,b) € u, a > 1, L < x then [x, 00) C suppv.
If x € suppv, (a,b) € u, a> 1, x < 5 then (—o0, x] C suppr.
Invariance of the support of v allows to generate a lot of points see
the book by Buraczewski, Damek, Mikosch Stochastic Models with

Power-Law Tails. The Equation X = AX + B
suppr = R or a half line



(a1, b1), (a2, b2) € suppp, a1 > 1,a, < 1, pu -law of (A, B) If

b b
1 < 2
1—31 1—82

then

(122 oc) < supp

If PJA=1,B > 0] > 0 then

by
[1 — 32,00) C suppv
If PJA=1, B > 0] = 0 for every (a1, b1), (a2, b2) € suppg,
a > 1, a <1

by by

>
1—31 1—32

then
suppr = (—o0, c]



Letac recursion

X, = B,+A, max {5(,7_1, C,} = max {A,,)N(,,_l—i—B,,, AnCh+Bp}, n>1.

X; = max{ApnX}_1 + Bn,0}, n>1.

)~<n Z Xn7 XrI, Z Xn- (5)

Under assumptions of Goldie-Kesten Theorem plus
E[A%|C|*] < oo, Goldie proved that

P[X > t] ~ C t™° as t — o0,

but no characterization of positivity of C;. Some sufficient
conditions in Goldie, and in Collamore, Vidyashankar.



Letac recursion
Xn = By + Apmax {X,_1, C,}

Theorem (Buraczewski, Damek)

Suppose that the assumptions of the Kesten-Goldie theorem are
satisfied and X (X') is unbounded at co. Then there is € > 0 such
that

P[X > t] > et™®

X is unbounded at oo if either P[A=1,B > 0] > 0 or
P[A =1,B> O] =0 and N3 < max{Nl, N2}

(A, B,C) =< p
Ni =sup{ac+b: (a,b,c) € supp u},
Ny =sup{b(1—a)~t: (a,b,c) €supp pand a < 1},
N3 =inf {b(1 —a)~': (a,b,c) €supp pu and a > 1}.

(6)



Lipschitz recursions

Xn - wn(Xn—l)
WV, random, Lipschitz, Elog Lip(W) < 0

Ax — B <V(x) < Ax + B, (7)

Theorem (Buraczewski, Damek, Mirek)

Suppose that (A, B) satisfies assumptions of the Kesten-Goldie
theorem and WV satisfies natural regularity assumptions. Then for
the stationary solution X we have (Mirek, 2011)

tll@ot P(X>t)= (4,

lim t*P(X < —t) = C_.

t—o0

If X is unbounded at oo then C; > 0 (Buraczewski, Damek).




Second recursion

Xn+1 = Ap1 Xn + By
Xpi1 = Ani1Xn + By
Bn+1 = min(—1, B,)
Xo=Xo=0

suppk C (—00,0]
P[R < t]t®* = C_ >0
Rn >R, >R

n

S ALAB =Y A AaB > > AL AiaB
j=1 j=1 j=1



A lemma

I\/I:m,?xl'l,,, M, =A;1---A,

lim P[M > t]t* = ¢ > 0.
t—o0

Let U, ={N, > t, R, > —Ct}. Then there is D > 0 such that

P[Lnj Uy] > %ra.

Not that surprising because

P[R, < —Ct] <P[R < —-Ct] < C_C~ %@



IP[U{I‘I,, >t Ry > —Ct}} > %t‘“

n

P[Ro6" > C+1]=n>0, R unbounded

PN, > t,R, > —Ct]P[Ro 6" > C +1]
=P[N, >t R, >—-Ct,Ro6" > C+1]

R=R,+MN,R(0"w) > —-Ct+(C+1)t=t



Positivity of C, .

In the case A > 0 the support of v is R = (—o00,00) or a half line:
Cy > 0iff [c,00) C suppr

Theorem (Guivarc'h, Le Page)

Suppose that the assumptions of the Kesten-Goldie theorem are
satisfied: Elog|A| < 0, E|A|* =1 for some a > 0,

0 < my =E|A]%log |A| < oo, E|B|* < oo and R is unbounded at
0o. Then there is € > 0 such that

PR > t] > et™ @




%t*a <PM>t]= Lnj{nn > t})

=P(|J{N»>tand R < —Ct})
P(|J{Nn >t and R > —Ct})

<P[R < —Ct]+P(| J{N, >t and R > —Ct})

IA

Ci
C
Co

t=*+P(|J{Nn > t and R, > —Ct})

oy ]P’[U Uy



R = ZAl Aj_1B;

ZAl J 15 + A1 A, Z An+1---Aj,18j
j=n+1

= Ro+ Ny(Ro 6"



P[R> C+1]=n>0 R unbounded
. _a
2t <nP[|J U]

IP’[U U, n (nL_Jl Uk)€] disjoint

i UUm Uuk JP[R(0"w) > C +1]
i UUm Uuk ) N {R(0"w) > C +1}]

<P(R>t)



"Uluk N{R(O") > C + 1)

My, >t R, >—Ct,R(0"w) > C+1
R, > —Ct
R=R,+MN,R(0"w) > —-Ct+(C+1)t=

n—1
N(Y W) n{R(O"w) > C+1}
k=1
n—1
C{R>t}N U, (| Ux)* disjoint
k=1



