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Introduction

Let (Xt)t≥0 be a one-dimensional Lévy process, i.e. a
real-valued process with independent stationary increments
starting from 0 and having càdlàg trajectories.

Ψ(ξ) - Lévy-Khintchin exponent of Xt , i.e. we have

Ee iξXt = e−tΨ(ξ), t ≥ 0, ξ ∈ R.

Supremum functional

Xt = sup
0≤s≤t

Xs

and its density function (if it exists)

ft(x) =
P(X t ∈ dx)
dx

, x > 0, t > 0.
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Aim: Describe P(Xt < x) and ft(x) by providing formulas and/or
sharp estimates and/or asymptotics.

In general, the double Laplace transform of Xt is known
(Baxter and Donsker 1957). For symmetric Lévy process we
have∫ ∞
0
e−ztEe−ξXtdt =

1√
z

exp
(
− 1
π

∫ ∞
0

ξ log(z + Ψ(η))

ξ2 + η2
dη
)
.

In some special cases, there exist explicit formulas for Xt
Ψ(ξ) = ξ2, Brownian motion,
Ψ(ξ) = ξ, symmetric Cauchy process,
Ψ(ξ) = 1− cos ξ, symmetric compound Poisson process,
Ψ(ξ) = −iξα + λ(e iξ − 1), Poisson process with drift,
Double series representation for stable processes.
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We denote by κ(z , ξ) the Laplace exponent of the bivariate
subordinator (τs ,Hs).

κ(z , ξ) = exp

(∫ ∞
0

∫
[0,∞)

(e−t − e−zt−ξx)t−1P(Xt ∈ dx)

)
and

κ(z , 0) = dz +

∫
(0,∞)

(1− e−zx)π(dx)

where d and π are a drift and a Levy measure of ladder-time
process τs respectively.

Renewal function of the process Hs

h(x) =

∫ ∞
0

P(Hs < x)ds

and its derivative

h′(x) =

∫ ∞
0

P(Hs ∈ dx)ds/dx .
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Theorem [M.Kwaśnicki, JM, M.Ryznar, AoP 2013]
For every x , t > 0 we have

P(Xt < x) ≤ min(1,
e
e − 1

κ(1/t, 0)h(x)).

Moreover, under some (mild but technical) assumptions on
regularity of κ(z , 0) we show existence of C > 0 such that

C min(1, κ(1/t, 0)h(x)) ≤ P(Xt < x).

In particular, if κ(z , 0) is regularly varying at 0 and ∞ then

P(Xt < x) ≈ min(1, κ(1/t, 0)h(x)), x > 0, t > 0,

(possibly with different indices).

Jacek Małecki On suprema of Lévy processes
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If we assume that X is symmetric, then κ(z , 0) =
√
z and we have

P(Xt < x) ≈ min
(

1,
h(x)√
t

)
, x > 0, t > 0.

Theorem [M.Kwaśnicki, JM, M.Ryznar; AoP 2013]
Let Ψ(ξ) be the Lévy-Khintchin exponent of a symmetric Lévy
process Xt , which is not a compound Poisson process, and suppose
that both Ψ(ξ) and ξ2/Ψ(ξ) are increasing in ξ > 0. Then

2
5

1√
Ψ(1/x)

≤ h(x) ≤ 5
1√

Ψ(1/x)
, x > 0.

In particular, under above-given assumptions we have

P(Xt < x) ≈ min

(
1,

1√
tΨ(1/x)

)
, x , t > 0

and the constants appearing in the estimates are 1/20000 and 10.
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What about the density ft(x)?

Here we work assuming

(H1) The transition semigroup of (X ,P) is absolutely continuous
and there is a version of its densities, denoted by x 7→ pt(x),
x ∈ R, which are bounded for all t > 0.

(H2) (X ,P) is not a compound Poisson process and for all c ≥ 0,
the process ((|Xt − ct|, t ≥ 0),P) is not a subordinator.

(H1) is equivalent to apparently stronger condition that
pt ∈ C0(R) for every t > 0.

These conditions imply existence of ft(x) on (0,∞)
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What we should expect?

Since, in very general setting, we have∫ x
0
ft(y)dy = P(Xt < x) ≈ min(1, h(x)κ(1/t, 0)),

we can expect that

ft(x) ∼ h′(x)κ(1/t, 0),

when x → 0+ or t →∞,

and similarly

ft(x) ≈ h′(x)κ(1/t, 0),

for t large and x small.

Jacek Małecki On suprema of Lévy processes



Asymptotic behaviour of ft(x), when x → 0+

Theorem [L.Chaumont, JM; AIHP (hopefully 2016)]
The density of the law of the past supremum of (X ,P) fulfils the
following asymptotic behaviour,

lim
x→0+

ft(x)
h′(x)

= π(t,∞)

uniformly on [t0,∞) for every fixed t0 > 0.

Recall that

κ(z , 0) = dz +

∫
(0,∞)

(1− e−zx)π(dx)

If κ(z , 0) is regularly varying at 0, then

κ(1/t, 0) ∼ Γ(1− ρ)π(t,∞)

as t →∞.
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Asymptotic behaviour of ft(x), when t →∞

Theorem [L.Chaumont, JM; AIHP (hopefully 2016)]
If we additionally assume that π(t,∞) is regularly varying at ∞
then

lim
t→∞

ft(x)
π(t,∞)

= h′(x)

uniformly in x on every compact subset of (0,∞).

Note that the following conditions are equivalent

π(t,∞) is regularly varying at infinity,

z → κ(z , 0) is regularly varying at 0,

limt→∞ P(Xt ≥ 0) = ρ.
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Estimates of ft

Theorem [L.Chaumont, JM; AIHP 2016]
For every fixed x0, t0 > 0 there exist constants c1, c2 > 0 such that

c1 π(t,∞) ≤ ft(x)
h′(x)

≤ c2
1
t

∫ t
0
π(s,∞)ds, x ≤ x0, t ≥ t0

and if additionally π(t,∞) is regularly varying at ∞ then

ft(x)
x0,t0≈ π(t,∞)h′(x) ≈ κ(1/t, 0)h′(x)

for x ≤ x0 and t ≥ t0.
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Continuity of ft

Under (H1), continuity of ft is equivalent to the continuity of h′ in
the following sense:

Theorem [L.Chaumont, JM; AIHP 2016]
The following conditions are equivalent:

ft is continuous at x0 > 0 for every t > 0,

ft is continuous at x0 > 0 for some t > 0,

h′ is continuous at x0 > 0.

Note that

in many (many) cases h′ is continuous on (0,∞).

However, sometimes h′ is not continuous.
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Explicit formulas

Theorem [Kwaśnicki, JM, Ryznar; AoP 2013]
Suppose that Xt is a symmetric Lévy process with Lévy-Khintchin
exponent Ψ(ξ). Suppose that Ψ(ξ) is increasing in ξ > 0. Then

1
π

∫ ∞
0

ξΨ′(λ)

(λ2 + ξ2)
√

Ψ(λ)
exp

 1
π

∫ ∞
0

ξ log λ2−ζ2
Ψ(λ)−Ψ(ζ)

ξ2 + ζ2
dζ

 e−tΨ(λ)dλ

is a Laplace transform of Xt (i.e. Ee−ξXt ).

Note: The Baxter-Donsker formula∫ ∞
0
e−ztEe−ξXtdt =

1√
z

exp
(
− 1
π

∫ ∞
0

ξ log(z + Ψ(η))

ξ2 + η2
dη
)
.
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Theorem [M.Kwaśnicki, JM, M.Ryznar; SPA 2013]
Suppose that the Lévy-Khintchin exponent Ψ(ξ) of a symmetric
Lévy process Xt satisfied Ψ(ξ) = ψ(ξ2) for CBF ψ(ξ). For every
t > 0 we have

P(Xt < x) =
2
π

∫ ∞
0

√
ψ′(λ2)

ψ(λ2)
Fλ(x)e−tψ(λ2)dλ, x > 0.

Here Fλ(z) are generalized eigenfunctions on half-line
(Kwaśnicki, Studia Math. 2011).

We have to impose some additional (technical) assumptions
on Ψ.

There is a quite long list of examples.
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Since

P(X t < x) = P(τx > t),

where

τx = inf{t ≥ 0 : Xt ≥ x}

is the first passage time through a barrier at level x ≥ 0.

Differentiating (in t) the formula

P(τx > t) =
2
π

∫ ∞
0

√
ψ′(λ2)

ψ(λ2)
Fλ(x)e−tψ(λ2)dλ

we get

Theorem [M.Kwaśnicki, JM, M.Ryznar; SPA 2013]
If [some technical assumptions on ψ(ξ)], then

dn

dtn
P(τx > t) = (−1)n

2
π

∫ ∞
0

√
ψ′(λ2)(ψ(λ2))n−

1
2Fλ(x)e−tψ(λ2)dλ
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Theorems [M.Kwaśnicki, JM, M.Ryznar; SPA 2013]
Under [some regularity of ψ(ξ)], we have

lim
t→∞
tn+1/2

dn

dtn
P(τx > t) =

(−1)nΓ(n + 1/2)

π
h(x).

and

lim
x→0+

√
ψ(1/x2)

dn

dtn
P(τx > t) =

(−1)nΓ(n + 1/2)

πΓ(1 + α)

1
tn+1/2

Moreover

(−1)n
dn

dtn
P(τx > t) ≈

1

tn+1/2
√
ψ(1/x2)

,

when tψ(1/x2) is large enough.
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P(τx > t) =

(−1)nΓ(n + 1/2)

πΓ(1 + α)

1
tn+1/2

Moreover

(−1)n
dn

dtn
P(τx > t) ≈

1

tn+1/2
√
ψ(1/x2)

,

when tψ(1/x2) is large enough.
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What happens if we replace

X t = sup
s≤t
Xs by Mt = sup

s≤t
|Xs |?

Equivalently, we replace the first passage time τx by

τ(−r ,r) = inf{t > 0 : |Xt | > r},

since P(Mt ≥ r) = P(τ(−r ,r) ≤ t).

In general, it is a disaster...

We lose all the machinery of fluctuation theory...

Can we still say something about P(Mt > x) or
P(τ(−r ,r) > t)? At least for Brownian motion?
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Let us consider the Brownian motion W = (Wt)t≥0 in Rd .

As previously Mt = sups≤t |Ws | and

τB(0,r) = inf{t > 0 : |Wt | /∈ B(0, r)}

We consider more general problem of describing

Px(Wt ∈ dy , τB(0,r) > t), x , y ∈ Rd , t > 0.

by looking for sharp estimates of its density

pB(0,r)(t, x , y) = Px(Wt ∈ dy , τB(0,r) > t)/dy

(transition probability density of BM killed upon leaving a ball)

For r = 1 we will simply write B = B(0, 1) and consequently
pB(t, x , y) and τB .
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Theorem [Zhang; JDE 2002]
There exists constants c1 and c2 such that

pB(t, x , y) ≈
(

(1− |x |)(1− |y |)
t

∧ 1
)

1
td/2

exp
(
−ci
|x − y |2

2t

)
for t < 1, where c1 and c2 appear in the lower and upper bounds
respectively.

The Zhang’s result is more general (for bounded C 1,1

domains) and then the expressions 1− |x | are replaced by the
distance to the boundary δD(x).

The upper-bounds were provided by Davies in 1987

The bounds for t large are simple and well-known.
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Classical Dirichlet heat kernel of a ball

Theorem [JM, G.Serafin 2016]
We have

pB(t, x , y)
d
≈ h(t, x , y) 1

td/2
exp

(
−|x − y |

2

2t

)
for every x , y ∈ B(0, 1) and t small enough. Here h(t, x , y) is
equal to(
(1− |x |)(1− |y |)

t
∧ 1

)
+

[
(1− |x |)|x − y |2

t
∧ 1

] [
(1− |y |)|x − y |2

t
∧ 1

]

The Zhang’s result

pB(t, x , y)≈
(

(1− |x |)(1− |y |)
t

∧ 1
)

1
td/2

exp
(
−ci
|x − y |2

2t

)
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Theorem [JM, Serafin 2016]
We have

pB(t, x , y)
d
≈ h(t, x , y) 1

td/2
exp

(
−|x − y |

2

2t

)
for every x , y ∈ B(0, 1) and t small enough. Here h(t, x , y) is
equal to(
(1− |x |)(1− |y |)

t
∧ 1

)
+

[
(1− |x |)|x − y |2

t
∧ 1

] [
(1− |y |)|x − y |2

t
∧ 1

]

Corollary:

kB(t, x , y) ≈
[

1− |x |
t

+
|x − z |2

t

[
1 ∧ (1− |x |2)|x − z |2

t

]]
1
td/2
e−
|x−z|2
2t

for every z ∈ ∂B and x ∈ B, t < 1. Here

kB(t, x , z) = Px [WτB ∈ dz , τB(0,1) ∈ dt]/dzdt
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Thank you very much.
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