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The aim

Make inference on the jumps of a 1-dimensional process

Xt = X0 +
∫ t

0

bsds +
∫ t

0

σsdWs + jumps driven by a Poisson measure

observed at discrete times within the fixed time interval [0, 1],

Three features:

• The Brownian part
∫ t

0
σs dWs is typically dominating, but we are interested in jumps.

• The sampling times 0 = T (n, 0) < T (n, 1) < · · · < T (n, i) < · · · may be irregular,
possibly random.

• There is a microstructure noise: instead of XT (n,i) we observe

Y n
i = XT (n,i) + χn

i

(so tick-by-tick data, or all transactions data, can be used to do inference.



Notation

∆(n, i) = T (n, i)− T (n, i− 1)

∆n
i V = VT (n,i) − VT (n,i−1) V : any process

∆Vt = Vt − Vt− V : any càdlàg process

Regular sampling means ∆(n, i) = ∆n.

Spot Lévy measures of X: the compensator ν of the jump measure of X is assumed to
have the factorization

ν(ω, dt, dx) = dt Fω,t(dx)

(this is the “Itô semimartingale property” for the jumps). The measures Ft = Fω,t are
the spot Lévy measures, and

∫ t

0
ds

∫
(x2 ∧ 1)Fs(dx) < ∞.



Warning: We do not want to “estimate” the jumps ∆Xt themselves, since

• the “big jumps” over [0, 1] have no predictive value for the model.

• the “small” jumps are infinitely many, hence impossible to “estimate”.

Rather, we will estimate the “degree of activity” of the jumps, and also the “intensity”
of the small jumps (as specified below).



Assumptions on X (typically a log-price)

We have a filtered space (Ω,F , (Ft)t≥0,P) on which:

Xt = X0 +
∫ t

0

bs ds+
∫ t

0

σs dWs +
∫ t

0

∫

E

δ(s, z)(p= −q= )(ds, dz)+
∫ t

0

∫

E

δ′(s, z)p= (ds, dz)

σt = σ0+
∫ t

0

bσ
s ds+

∫ t

0

Hσ
s dW ′

s+
∫ t

0

∫

E

δσ(s, z)(p= −q= )(ds, dz)+
∫ t

0

∫

E

δ′σ(s, z)p= (ds, dz)

• W and W ′ are two correlated Brownian motions.

• p= is a Poisson measure on R+ × E with (deterministic) compensator q= (dt, dz) =
dt⊗ η(dz) (η is a σ-finite measure on the Polish space E).

• “standard” assumptions on the coefficients bt, b
σ
t ,Hσ

t : locally bounded, and (up to
localization). bt, Hσ

t satisfy for all finite stopping times T ≤ S:

E( sup
s∈[T,S]

|Vs − VT |2) ≤ KE(S − T ) (1)

• |δ(t, z)|r′ , 1{δ′(t,z)6=0} ≤ J(z) for some non-random η-integrable function J and some
r′ ∈ [0, 2), and the same for δσ, δ′σ (up to localization).



MOREOVER, we need a structural assumption on the high-activity jumps of X,
expressed in terms of the BG (Blumenthal-Getoor) index, or successive BG indices:

There is an integer M ≥ 0, numbers 2 > β1 > · · ·βM > 0, and nonnegative càdlàg
processes a1

t , . . . , a
M
t , such that each (am

t )1/βm satisfies (2), and the symmetrized Lévy
measures F̆t(A) = Ft(A) + Ft(−A) are such that the (signed) measure

F ′t(dx) = F̆t(dx)−
M∑

m=1

βmam
t

|x|1+βm
1{0<|x|≤1} dx

satisfies (|F ′t | being the “absolute value” of F ′t ):

|F ′t |([−x, x]c) ≤ Γ
xr

∀x >∈ (0, 1].

Example:

Xt = X0 +
∫ t

0

bs ds +
∫ t

0

σs dWs +
M∑

m=1

∫ t

0

γm
s− dY m

s +
∫ t

0

∫

E

δ′(s, z)p= (ds, dz)

with Y m independent stable or tempered stable processes (with arbitrary dependencies
with p= , and indices βm) and γm’s are Itô semimartingales.

We then have am
t = |γm

t |βm (up to a multiplicative constant).



REGULAR OBSERVATIONS – NO NOISE

Choose a sequence kn of integer (→∞) and set

L(y)n
j =

1
kn

kn−1∑

l=0

cos(y(∆n
i+1+2lX −∆n

i+2+2lX)/
√

∆n )

We take differences of two successive returns to “symmetrize” the jump measure around
zero and kill the drift.

We have approximately, with χ(β) =
∫∞
0

sin y
yβ dy:

E(L(y)n
i | Fi) ≈ exp

(
−y2σ2

i∆n
− 2

M∑
m=1

χ(βm)yβm∆1−βm/2
n am

i∆n

)

hence the following is a estimator of the spot (squared) volatility ct = σ2
t for t ≈ i∆n:

ĉ(y)n
j = − 1

y2
log

(
L(y)n

j

∨ 1
log(1/∆n)

)



Introducing a de-biasing term, we set

Ĉ(y)n
t = 2kn∆n

[t/vn]−1∑

j=0

(
ĉ(y)n

j −
1

y2kn

(
sinh(y2ĉ(y)n

j )
)2

)
,

where sinh(x) = 1
2 (ex − e−x) is the hyperbolic sine. This “estimates”

Ct +
M∑

m=1

Am,n(y)t, where

Am,n(y)t = yβm−2∆1−βm/2
n Am

t , Am
t = 2χ(βm)

∫ t

0

am
s ds

and the normalized error term is

Z(y)n
t =

1√
∆n

(
Ĉ(y)n

t − Ct −
M∑

m=1

Am,n(y)t

)
.



The CLT: Let Y be a finite subset of (0,∞). Choose kn and un such that

kn

√
∆n → 0, kn∆1/2−ε

n →∞ ∀ε > 0, un → 0,
kn

√
∆n

u2
n

→ 0.

Theorem We have the (functional) stable convergence in law:

(
Z(un)n,

( 1
u2

n

(Z(yun)n − Z(un)n)
)
y∈Y

) L−s=⇒ (
Z, ((y2 − 1)Z)y∈Y

)
,

where the limit is defined on an extension (Ω̃, F̃ , (F̃t)t≥0, P̃) of the original space (Ω,F , (Ft)t≥0,P)
and can be written as

Zt = 2
∫ t

0

cs dW (1)
s , Zt =

2√
3

∫ t

0

c2
s dW (2)

s .

where W (1) and W (2) are two independent Brownian motions, independent of the σ-field
F .



Estimation of β1 (when M = 1 for simplicity): Observe that

C(y)n
t = Ĉ(uny)n

t − Ĉ(un)t

= Am,n(uny)−Am,n(un)t +
√

∆n (Z(yun)n
t − Z(un)t))

= uβ1−2
n (yβ1−2 − 1)∆1−β1/2

n A1
t +

√
∆n (Z(yun)n

t − Z(un)t))

The function f(x) = 4x−1
2x−1 is C∞ on (1, 2), with a C∞ reciprocal function f−1.

Then a natural estimator for β1 is, for example,

β̂n
t = f−1

(C(4)n
t

C(2)n
t

)

and we have
uβ1−2

n

∆(β1−1)/2
n

(
β̂n

t − β1

) L−s−→ Y

for some mixed centered normal y with a known (conditional) variance. The rate is
thus almost 1/∆(β1−1)/2

n , better than rates obtained by other methods when β1 > 4/3.

The choice kn ≈ 1/
√

∆n and un going to 0 very slowly is in fact not “optimal” for
this problem, so better (but complicated...) rates can actually be achieved.



One can also estimate A1
t = 2χ(β1)

∫ t

0
a1

s ds, using for example

Ân,1
t = C(2)n

t

1

u
β̂n
1

n − 2)(2β̂n
1−2 − 1)∆1−β̂n

1 /2
n

(on similarly estimate
∫ t

0
a1

s ds).

Then we have a CLT for Ân,1
t , with the same kind of limit, and the same rate

divided by log((1/∆n) to an appropriate power.



NOISE AND IRREGULAR SAMPLING

Assumptions on the observation scheme

Assumption: The inter-observations lags are

∆(n, i + 1) = ∆nλT (n,i)Φn
i+1

• λt positive càdlàg adapted, satisfying

E(|λT − λS |) ≤ E(T − S)

for all stopping times S ≤ T and 1/K ≤ λt ≤ K (up to localization).

• The variables Φn
i are positive, E(Φn

i ) = 1, and supn,i E(Φn
i )p) < ∞ for all p > 0.

• The variables (Φn
i : i ≥ 1) are mutually independent and independent of F∞

This implies in particular that Nn
t =

∑
i≥1 1{T (n,i)≤t} satisfies

∆nNn
t

u.c.p.=⇒ Λt :=
∫ t

0

1
λs

ds.

We denote by Hn
∞ the σ-field generated by F∞ and all Φn

i : i ≥ 1).



Two assumptions on the noise

We observe Y n
i = XT (n,i) + γ′T (n,i)ε

n
i , where

(N1): The process γ′ is an Itô semimartingale, and the variables (εn
i : i ≥ 1) are i.i.d.,

independent of Hn
∞, with

E(εn
i ) = 0, E((εn

i )2) = 1, E(|εn
i |p) < ∞.

(N2): The variables (εn
i : i ≥ 1) are independent, conditionally on Hn

∞ with

E((εn
i )p |Hn

∞) = γ
(p)
T (n,i), P(εn

i ∈ B | Hn
∞) = P(εn

i ∈ B | Hn
T (n,i)).

(where (Hn
t ) is the smallest filtration containing (Ft) and for which all T (n, i) are

stopping times. Moreover, γ
(1)
t = 0 and γ

(2)
t = 1; moreover γ′t and all γ

(p)
t satisfy (2)

and are (Ft)-adapted.

(N1) is much stronger than (N2), and not very realistic. Later on, γt = (γ′t)2 (this
is the “variance” of the noise).



An important example satisfying (N2) but not (N1).

Let ρj
t ≥ 0 be càdlàg adapted nonnegative with

∑
j∈Z ρj

t = 1 and ρj
t = ρ−j

t and
supt

∑
j∈Z ρj

t |j|p < ∞. For each n let (Zn
i : i ≥ 1) be i.i.d. conditionally on Hn

∞, with
density x 7→ ∑

j∈Z ρj
T (n,j)1[j,j+1)(x). The observation at time T (n, i) is

Y n
i = [XT (n,i) + Zn

i ],

so we have a additive (modulated) white noise plus rounding.

Remark: If we have “pure rounding”, i.e. if we observe [XT (n,i)] (or [XT (n,i)] + 1
2 to

“center” the noise), then no consistent estimator for Ct exists.



Pre-averaging

We choose 3 tuning parameters un, hn, kn all going to ∞: here un > 0 will be the
argument of the empirical characteristic function below, and hn, kn (two integers) are
window sizes.

The de-noising method is pre-averaging, but other methods could probably be used
as well. Take a weight (or, kernel) function g on R with

g is continuous, piecewise C1 with a piecewise Lipschitz derivative g′,
s /∈ (0, 1) ⇒ g(s) = 0,

∫ 1

0
g(s)2ds > 0,

for example g(x) = (x ∧ (1− x)) 1[0,1](x). With a sequence hn →∞ of integers, set

gn
i = g(i/hn), gn

i = gn
i+1 − gn

i

φn = 1
hn

∑
i∈Z(g

n
i )2, φn = hn

∑
i∈Z(g

n
i )2, φ̃

(β)
n = 1

hn

∑
i∈Z |gn

i |β ,

φ =
∫

g(u)2 du, φ =
∫

g′(u)2 du, φ̃(β) =
∫ |g(u)|β du

The pre-averaged returns of the observed values Y n
i are

Ỹ n
i =

hn−1∑

j=1

gn
j (Y n

i+j − Y n
i+j−1) = −

hn−1∑

j=0

gn
j Y n

i+j .



Initial estimators

For any y > 0, set

L(y)n
i =

1
kn

kn−1∑

l=0

cos
(
yun(Ỹ n

i+2lhn
− Ỹ n

i+(2l+1)hn
)
)

(a proxy for the real part of the empirical characteristic function of the returns, over
a window of 2hnkn successive observations). Taking a difference above allows us to
“symmetrize” the problem.

Then, for any y > 0, a natural estimator for the “integrated volatility” over the
time interval [T (n, i), T (n, i + 2hnkn)] is

2kn

y2u2
nφn

v(y)n
i , v(y)n

i = − log
(
L(y)n

i

∨ 1
hn

)
.



We need to de-bias these estimators, to account for the noise, and also for some
intrinsic distortion present even when there is no noise. With f(x, y) = 1

2

(
e2x−y +

e2x − 2
)
, set

Ĉ(y)n
t = kn

y2u2
nφn

[Nn
t /2hnkn]−1∑

j=0

(
2v(y)n

2jhnkn
− 1

kn
f(v(y)n

2jhnkn
, v(2y)n

2jhnkn
)

−φny2u2
n

∑
l=1(∆

n
2jhnkn+l)

2
)
.

Finally, we set

Z(y)n
t = Ĉ(y)n

t − Ct − 2
φn

M∑
m=1

|y|βm−2uβm−2
n φ̃βm

n Am
t



The basic CLT

Below, Y is any finite subset of (0,∞).

Theorem under appropriate conditions on un, hn, kn, plus

uβ1
n h3

n∆n

uβ1
n h3

n∆n + u4
n(1 + h2

n∆n)2
→ η,

h2∆n

1 + h2
n∆n

→ η′

and with

vn = kn

√
h3

n∆n

u4
n(1 + h2

n∆n)2 + uβ1
n h3

n∆n

for any t > 0 the variables
(
vnZ(y)n

t

)
y∈Y converge F∞-stably in law to (Z(y)t)y∈Y ,

which is defined on an extension (Ω̃, F̃ , P̃) and is, conditionally on F , centered Gaussian
with variance-covariance given by

Ẽ(Z(y)tZ(y′)t | F)

=
∫ t

0

(
ηψ(β1, y, y′)a1

sλs + (1− η)y2y′2
(
η′φσ2

sλs + (1− η′)φγs

)2 1
λs

ds



Estimation of β1

Assume again M = 1. We use estimator analogous to the estimators in the regular
no-noise case, that is

β̂n
t = f−1

(C(4)n
t

C(2)n
t

)
.

where f(x) = 4x−1
2x−1 and

C(y)n
t = Ĉ(y)n

t − Ĉ(1)t

= 2
φn

(
uβ1−2

n (yβ1−2 − 1)∆
1−β1/2
n A1

t + (Z(y)n
t − Z(1)t))

)

and we have (when the basic CLT holds):

uβ1/2
n

(
β̂n

t − β1

) L−s−→ Y

for some mixed centered normal Y with a known (conditional) variance. We similarly
have estimators with an analogous CLT for A1

t .

Problem: Choose un, hn, kn) with the appropriate conditions, plus un as large as
possible.



Reporting only the rate for β1, we find the following (sub)-optimal rates (depending
on the value of β1, and on an arbitrary ε > 0).

• If σt ≡ 0 and (N1):

1/∆
β1

10−4β1
(1−ε)

n if β1 ≤ 3
4

1/∆
β1
7

(1−ε)
n if 3

4
≤ β1 ≤ 3

2

1/∆
β1

4+2β1
(1−ε)

n if β1 ≥ 3
2

• If σt ≡ 0 and (N2):

1/∆
3β1

30−11β1
(1−ε)

n if β1 ≤ 3
4

1/∆
3β1

21+β1
(1−ε)

n if 3
4
≤ β1 ≤ 3

2

1/∆
3β1

12+7β1
(1−ε)

n if β1 ≥ 3
2



• If σt not 0 and (N1):
1/∆

β1
16−5β1

(1−ε)

n if β1 ≤ 16
11

1/∆
3β1

32−4β1
(1−ε)

n if β1 ≥ 16
11

• If σt not 0 and (N2): 1/∆
3β1

48−11β1
(1−ε)

n



Some problems:

1 - Optimality concerning β1

2 - When M ≥ 2, what does the rate for β1 become ?, and can we estimate
β2, β3, . . . ?

3 - How to choose in practice (unhn, kn) (so far, only “mathematical” results are
known.


