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CB-processes.

A continuous-state branching process (or CB-process) is a non-negative
valued strong Markov process with probabilities (P, z > 0) such that for
any z,y > 0, P, is equal in law to the convolution of P, and P,,.

CB-processes may be thought of as the continuous (in time and space)
analogues of classical Galton-Watson branching processes.

More precisely, a CB-process Y = (Y;, ¢ > 0) is a Markov process taking
values in [0, oo], where 0 and oo are two absorbing states, and satisfying
the branching property.

In particular,

E, [e‘AY‘} = exp{—zu;(\)}, for A >0,

for some function ().
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The function u;(\) is determined by the integral equation

S|
du =
/ztt(A) Y(u) vt

where ¢ (branching mechanism of Y') satisfies the Lévy-Khincthine
formula

P(A) = —aX +92)\? +/ (e7™ — 1+ Azlgcy) pu(da),
(0,00)

where a € R, v > 0 and p is a o-finite measure such that

/ (LA z?)p(dz) < cc.
(0,00)
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The function u;(\) is determined by the integral equation

S|
du =
/ztt(A) Y(u) vt

where ¢ (branching mechanism of Y') satisfies the Lévy-Khincthine
formula

P(A) = —aX +92)\? +/ (e7™ — 1+ Azlgcy) pu(da),
(0,00)

where a € R, v > 0 and p is a o-finite measure such that
/ (LA z?)p(dz) < cc.
(0,00)

Observe E,[Yi] = ze—¥ (01t Hence, in respective order, a CB-process is
called supercritical, critical or subcritical accordingly as ¥’ (07) < 0,
P'(0T) =0 or ¢/ (07) > 0.
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The probability of extinction is given by
P, (lim Y, = o) — e,
t—o0
where 7 is the largest root of .

A CB-process Y with branching mechanism 1 has a finite time extinction
almost surely if and only if

*© du

(u)

<oo and ¢'(0+) > 0.
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A CB-process can also be defined as the unique non-negative strong
solution of the stochastic differential equation

¢ t
Y, =Yy + a/ Y.ds Jr/ /272 YsdB;
0 0

t Yoo oo t Y,_
—l—/ / / zN(ds,dz,du)—i—/ / / zN (ds,dz,du),
o J(,1)Jo 0 J[l,00) JO

where B = (By,t > 0) is a standard Brownian motion, N is a Poisson
random measure independent of B, with intensity ds ® p(dz) ® du and
N is its compensated version.
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We introduce a continuous state branching process in a Lévy random
environment (CBLRE) as the unique non-negative strong solution of the
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t t
Zy =7y + a/ Zsds —|—/ \/2v2Z,d B,
0 0

t g t Zo_
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CB-process in a Lévy random environment

We introduce a continuous state branching process in a Lévy random
environment (CBLRE) as the unique non-negative strong solution of the
stochastic differential equation

Zy Z0+a/st+/ V' 2v?ZsdB; +/ZdS
0 0

/ / / a N(ds,dz,du) / / / a N(ds,dz,du),
0,1) 1,00)
where

t
S, :at+gBt(e)+/ / (e —1)N(®)(ds,d2)
0 J(-1,1)

¢
+/ / (e —1)N(®)(ds,dz),
0 JR\(~1,1)
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with @« € R and 0 > 0, B(®) = (Bt(e),t > 0) is a standard Brownian
motion and N(¢)(ds,dz) is a Poisson random measure in R, x R
independent of B(¢) with intensity dsm(dy), N () its compensated
version and 7 is a o-finite measure satisfying

/(1 A 22)m(dz) < oo.
R

We will assume that all the objects involve in the branching and
environmental terms are mutually independent.
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with @« € R and 0 > 0, B(®) = (Bt(e),t > 0) is a standard Brownian
motion and N(¢)(ds,dz) is a Poisson random measure in R, x R
independent of B(¢) with intensity dsm(dy), N () its compensated
version and 7 is a o-finite measure satisfying

/(1 A 22)m(dz) < oo.
R

We will assume that all the objects involve in the branching and
environmental terms are mutually independent.

When |9/ (0+)| < oo, we define the auxiliary process

t t
K, = mt—l—UBt(e)—i—/ / UN(6>(ds,du)+/ / oN©(ds, dv),
0 = 0 JR\(-1,1)

where
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Let C%(R,) and D(R,) be the sets of functions with continues first and
second derivatives and the set of cadlag functions, respectively.

Theorem

The previous stochastic differential equation has a unique non-negative
strong solution. The process Z = (Z;,t > 0) is a Markov process and its
infinitesimal generator L satisfies, for every f € C%(R,),

2

Af(@) = (m+ @)y (2) + (2 + Fa*) 1(@)
o f (142 =@ A @)1 )Ad2)
+ [ (@) = 1) = ae” = Df @)Lgaen ) w(d2).

Furthermore, the process Z, conditionally on K, satisfies the branching
property and for |1’ (0+)| < oo, we have for every t > 0

]Ez[exp{—)\Zte_K"HK] :exp{—zvt(O,)\,K)} a.s.,

where for every (X, 8) € (Ry, D(R4)), v = s € [0, t] — ve(s, A, 0)
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Theorem
is the unique solution of the backward differential equation

gvt(s, A0) = 65°1110(vt(s, A, 5)67&),
s

with 1¥o(A) = () — MY’ (0+), and 1 is the branching mechanism of the
underlying CB-process.
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Theorem
is the unique solution of the backward differential equation

gvt(s, A0) = 65°1110(vt(s, A, 5)67&),
s

with 1¥o(A) = () — MY’ (0+), and 1 is the branching mechanism of the
underlying CB-process.

Idea of the proof: First, we fix n > 1 and prove the existence of a
positive weak solution of the SDE

t t
7t = 7§ + a/ (Z5" An)ds +/ V/272(Z» A n)dBs +/ (ZX An)dSs (1)
0 0

t
0

t (2] An)— 5 t (Z}An)—
+/ / / (z/\n)N(ds,dmdu)—i—/ / / (z An)N(ds,dz,du).
o J,1)Jo 0 J1,00) Jo
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Similar techniques as those used in Dawson & Li (2012) provides the
pathwise uniqueness of (1). Basically, we take Z™ and Z™’ two solutions
of (1) and prove that the expectation of |Z™ — Z™'| equals 0.
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Similar techniques as those used in Dawson & Li (2012) provides the
pathwise uniqueness of (1). Basically, we take Z™ and Z™’ two solutions
of (1) and prove that the expectation of |Z™ — Z™'| equals 0.

Hence, the above arguments imply that there exists a unique
non-negative strong solution to (1).

For m > 1 let 7, = inf{¢ > 0: Z™ > m}. By a localization argument,
we may construct

Z" if t<Tm
oo if t2> lim 7,
m—r 00

Zt:

which is a weak solution to our original equation.

Finally, let Z’ and Z" be two solutions of our original equation and also
consider 7/, = inf{t > 0: Z/ > m}, 7/, =inf{¢t > 0: Z/' > m} and

m m
define 7, =7/, ATV
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Then, Z' and Z" satisfy (1) on [0, 7,,), so they are indistinguishable on

[0, 7). When 7o = lim 7, < 00, Z’' or Z” have a jump of infinity size
m—ro0

in To. This jump comes from an atom of IV, so that both processes have
it and thus Z’ and Z” are indistinguishable. Then, the strong solution to
our original equation follows.



Continuous state branching processes in a Lévy random environment.

LCB—process in a Lévy random environment

Then, Z' and Z" satisfy (1) on [0, 7,,), so they are indistinguishable on

[0, 7). When 7o = lim 7, < 00, Z’' or Z” have a jump of infinity size
m—ro0

in To. This jump comes from an atom of IV, so that both processes have

it and thus Z’ and Z” are indistinguishable. Then, the strong solution to

our original equation follows.

The strong uniqueness implies the strong Markov property. The form of
the generator follows from 1t6’s formula.



Continuous state branching processes in a Lévy random environment.

LCB—process in a Lévy random environment

Then, Z' and Z" satisfy (1) on [0, 7,,), so they are indistinguishable on

[0, 7). When 7o = lim 7, < 00, Z’' or Z” have a jump of infinity size
m—ro0

in To. This jump comes from an atom of IV, so that both processes have
it and thus Z’ and Z” are indistinguishable. Then, the strong solution to
our original equation follows.

The strong uniqueness implies the strong Markov property. The form of
the generator follows from 1t6’s formula.

The branching property of Z; conditionally on K, is inherited from the
CB-process.



Continuous state branching processes in a Lévy random environment.

LCB—process in a Lévy random environment

Then, Z' and Z" satisfy (1) on [0, 7,,), so they are indistinguishable on

[0, 7). When 7o = lim 7, < 00, Z’' or Z” have a jump of infinity size
m—ro0

in To. This jump comes from an atom of IV, so that both processes have

it and thus Z’ and Z” are indistinguishable. Then, the strong solution to

our original equation follows.

The strong uniqueness implies the strong Markov property. The form of
the generator follows from 1t6’s formula.

The branching property of Z; conditionally on K, is inherited from the
CB-process.

Let Z; = Z;e~ Xt and v (s, A, K) is differentiable with respect to the
variable s, non-negative and such that v (¢, A\, K) = A for all A > 0.
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Applying It8's formula one obtain that exp{fztvt(s, A, K)} conditionally
on K is a martingale if and only if for every t > 0,

%vt(s,)\,}() = —av(s,\ K) —1—72(%(3,)\,]())26_}(5

e / (eme ™ nNI0z _ 1 4 e~ Kogy (5,0, K) 21 (acy ) u(d2).
0
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In the case when [¢)'(0+)] = —oo, the auxiliary process is almost the
same. The only thing that changes is the drift which is given as follows

m=a-— - / (e’ —1—v)r(dv).
(71’1)
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same. The only thing that changes is the drift which is given as follows

m=a-— - / (e’ —1—v)r(dv).
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In this case, one can deduce that v;(s, A, K) is the unique solution to

(30 K) = o5, 2, K)e ™).
S



Continuous state branching processes in a Lévy random environment.

LCB—process in a Lévy random environment

In the case when [¢)'(0+)] = —oo, the auxiliary process is almost the
same. The only thing that changes is the drift which is given as follows

m=a-— - / (e’ —1—v)r(dv).
(7171)

In this case, one can deduce that v;(s, A, K) is the unique solution to

(30 K) = o5, 2, K)e ™).
S

In this case, the process Z, conditionally on K, satisfies

Ez[exp{—)\Zte_K‘}‘K] :exp{—zvt(O,A,K)} a.s.
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t
’Ut(sg )\7 K) = exp {es/ e_uKudU + log)\e—(t—s)} )
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Examples
Neveu's branching process: This example correspond to the case when

¢(u) =ulogu,  u>0.
Observe that 9/(0+) = —oo. In this case
t
’Ut(sg)\v K) :eXp{eS/ e_uKudU+10g)\e_(t_s)} )

Then,

E, [exp {f/\ZtefKtHK} = exp {z)\e_t exp {/t essts}} a.s.,
0

which implies that

IP’Z(Zt > O‘K) —1,  t>0.
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Observe that

E, {Zte*Kt exp{ — )\Zte*Ki}’K} — zethe -1

t t
X exp {/ e *K,ds — e exp {/ e_ssts}} .
0 0
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Observe that

E, {Zte*Kt exp{ — )\Zte*Ki}’K} — zethe -1
t ., t
X exp {/ e *Kyds — 2z)\° exp {/ e_ssts}} :
0 0

E,[Z;] = oo, t > 0.

This implies

Moreover, when K is just a Brownian motion with drift, the r.v.

fot e~ Kyds is Gaussian with mean (o — %2)(1 — et —te”") and

. 2 _ _
variance &-(1 —4e™" —3e™%").
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Feller's diffusion

If a = p(0,00) =0, the CBBRE is given by

¢ ¢ ¢
7y = 7y +a/ sts—i—a/ ZsdS, —|—/ \/2v2Z,dB,.
0 0 0
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Feller's diffusion

If a = p(0,00) =0, the CBBRE is given by

¢ ¢ ¢
7y = 7y +a/ sts—i—o/ ZsdS, —|—/ \/2v2Z,dB,.
0 0 0

The above is equivalent to the strong solution of the SDE
2
az, :%tht + Z,dK, + /272 Z,dB,
th =adt TP od Wt,

which looks as the branching diffusion in random environment studied by
Baéinghoff and Hutzenthaler (2011).
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Stable case. Here, the branching mechanism is of the form
P(A) = —aX + cgAPFL, A>0,
for some 8 € (—1,0) U (0,1), a € R, and

cg <0 if g€ (-1,0),
cg >0 1f6€(0,1)
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Stable case. Here, the branching mechanism is of the form
P(A) = —ar 4+ cgAPF, A >0,
for some 8 € (—1,0) U (0,1), a € R, and
{ cg <0 if g€ (-1,0),
cg>0 if e (0,1).

Under this assumption, the process Z satisfies the following stochastic
differential equation

t t t poo pZe-
Zy = Zo + a/ Zsds —|—/ Zs_dSs —|—/ / / zN(ds,dz,du)
0 0 o Jo Jo

and
(ds,dz,du) if 8 € (—1,0),

(ds,dz,du) if B3 € (0,1),

where N is an independent Poisson random measure with intensity

csB(B+1) 1

T(1—B) 228

=~ N
N(ds,dz,du) = { N

dsdzdu,
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In this case, we note

' | =0 i pe(-1,0),
¥(0+) = —a if B €(0,1).
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In this case, we note

p . -0 ifge (—170),
¥(0+) { —a i Be(01).

We use in both cases the backward differential equation of Theorem 1
and observe that it satisfies

agvt(s,)\,d) = —av(s,\,0) + cBUfH(s, A, 8)e PO,
s
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In this case, we note

p . -0 ifge (—170),
¥(0+) { —a i Be(01).

We use in both cases the backward differential equation of Theorem 1
and observe that it satisfies

agvt(s,)\,d) = —av(s,\,0) + cBUfH(s, A, 8)e PO,
s

Therefore,

: ~1/8
’l)t(S,)\7(5) = g™ (()\eat)—ﬁ P BCQ/ 6_5(5“+au)du>

Implying the following a.s. identity

t -1/B
E, [exp{ — /\Zte_K"HK] —exp{—z ()\_ﬁ —0—665/0 e_ﬁK“du> } .
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immediate concern for the process Z, explosion, absorption and
extinction.
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Similarly to the case of CB-processes, there are three events which are of
immediate concern for the process Z, explosion, absorption and
extinction.

Recall that ¢’(0+) € [—00, 00), and that whenever |¢)'(0+)] < 0o, we

write

0.2

m=a-—¢(04) - o= / (e’ —1—v)m(dv).
(71,1)
where

P'(04) = —a —/ zp(dr).

{z>1}
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Long-term behaviour

Similarly to the case of CB-processes, there are three events which are of
immediate concern for the process Z, explosion, absorption and
extinction.

Recall that ¢’(0+) € [—00, 00), and that whenever |¢)'(0+)] < 0o, we

write

0.2

m=a-—¢(04) - o= / (e’ —1—v)m(dv).
(71,1)
where

P'(04) = —a —/ zp(dr).

{z>1}

Proposition
Assume |¢'(0+)] < oo, then a CBPBRE Z with branching mechanism 1
satisfies

P.(Z; < ) =1, for all t > 0.
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Recall that in this case ¢)(u) = —au + cguP*!, where a € R and g is a
negative constant.
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[ Long-term behaviour

Stable case with 5 € (—1,0).

Recall that in this case ¢)(u) = —au + cguP*!, where a € R and g is a
negative constant.

From straightforward computations, we get 1’ (04) = —o0

From the Laplace transform of Z (taking \ goes to 0), we deduce

t —-1/B
P, (Zt < oo'K) = exp {—z <B05/ eB(K“J“a“)du> } a.s.,
0

implying

t -1/8
P, (Zt = oo’K) =1—exp {—z <605/ e—ﬁ(Kﬁau)du) } > 0.
0
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In this case, recall that ¢(u) = ulogu and in particular In particular

¥'(0+) = —o0.
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[ Long-term behaviour

Neveu case.

In this case, recall that ¢(u) = ulogu and in particular In particular

¥'(0+) = —o0.

By taking A goes to 0 in the Laplace exponent of Z, one can see that the
process is conservative conditionally on the environment, i.e.

P,(Z < oo|K) =1,

for all ¢ € (0,00) and z € [0, 00).
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Proposition
Assume that |1/ (0+)] < co. Let (Z;,t > 0) be a CBPBRE with
branching mechanism given by 1.
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Proposition
Assume that |1/ (0+)] < co. Let (Z;,t > 0) be a CBPBRE with
branching mechanism given by 1.

i) If K drifts to —co, then P, (tlim Zy = 0’[() =1, as.
— 00
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[ Long-term behaviour

Proposition
Assume that |1/ (0+)] < co. Let (Z;,t > 0) be a CBPBRE with
branching mechanism given by 1.

i) If K drifts to —co, then P, (tlim Zy = 0’[() =1, as.
—00
i) If K oscillates, then P, <litm infZ, = O‘K) =1, as.
e el
Moreover if v > 0 then

Pz( lim Z; = O‘K) —1,as
t—00
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Proposition

iii) If K drifts to +00 and
/ zIn(z) p(dzr) < oo

then P, (hm infZ; > O’K) > 0 a.s., and there exists a non-negative
finite r.v. W such that
Ze S — W,oas  and (W =0} ={lm z =0},
t—o00

t—o0

Moreover if v > 0, we have

m@mz—®2@+ﬁ>a
t—00 y
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[ Long-term behaviour

It is important to note that in the Feller and stable cases, i.e.
Y(u) = —au + cguP* for B € (0,1], one can deduce directly that

lim Z;, =0, a.s.,
t—o0

whenever K does not drift to +oc0.
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It is important to note that in the Feller and stable cases, i.e.
Y(u) = —au + cguP* for B € (0,1], one can deduce directly that

lim Z;, =0, a.s.,
t—o0

whenever K does not drift to +oo.
In the case when K drifts to +00, we have

o -1/B
P,(lim Z; =0|K) =exp{ —z (605/ e_BK“du> , a.s.,
t—o00 0

and in particular

IP(W:O) :Pz( lim tho) —E.
t—o0

) -1/8
exp {—z (BCB/ e_ﬁK“du> }:| .
0
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It is important to note that in the Feller and stable cases, i.e.
Y(u) = —au + cguP* for B € (0,1], one can deduce directly that

lim Z;, =0, a.s.,
t—o0

whenever K does not drift to +oo.
In the case when K drifts to +00, we have

o -1/B
P,(lim Z; =0|K) =exp{ —z (605/ e_BK“du> , a.s.,
t—o00 0

and in particular

IP(W:O) :Pz( lim tho) —E.
t—o0

) -1/8
exp {—z (BCB/ e_ﬁK“du> }:| .
0

The latter probability can be computed explicitly in some specific cases.
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[ Long-term behaviour

Neveu case. Recall that the Neveu CBPBRE process Z satisfies
P(0 < Z; < 0) =1,
for all ¢t € (0,00) and z € (0, 00).

On the one hand, we have that

t o] 0_2
lim e *Kyds = a/ e dK; + a — —,
0 0

t—o0 2

exists whenever Elog | K;|] < co. In the case where K is a Brownian
. . a o 2 . 2
motion, the latter r.v. is Gaussian with mean o — "7 and variance %

Hence,
E, [exp{ — A lim Zte_K‘}‘K] = exp {—zexp{/ e_ssts}}.
t—o00 0
implying

P, ( lim Z,e % = 0) =E [exp{—zexp {/ e_ssts}H .
t—o00 0
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Theorem
Let (Z;,t > 0) be the stable CBLRE with index $ € (—1,0) and
ZO =2z>0.
i) Subcritical-explosion. If ¢ (0+) < 0, then there exist ¢1(z) > 0
such that

thj&Pz(Zt < 00) = ¢1(%).

it) Critical-explosion. If ¢,-(04) = 0, then then there exist ca(z) > 0
such that
tlim VP, (Z; < 0) = ca(2).
— 00

iii) Supercritical-explosion. If ¢,-(04) > 0 then there exist c3(z) > 0

lim t%ed’K(T)IP’Z(Zt < o0) = e3(z),

t—o0

where T is the value at which ¢ attains its minimum.
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LStabIe case

Theorem
Let (Z;,t > 0) be a the stable CBLRE with 8 € (0,1). Then for all
z >0,
i) (Supercritical case) If ¢, (0+) > 0, then there exist c4(z) > 0 such
that

tlggo P.(Z; > 0) = ca(z).
it) (Critical case) If ¢/, (0+) = 0, then there exist c5(z) > 0 such that

Jim VP, (Z; > 0) = c5(2).
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Theorem

iii) (Weakly subcritical) If ¢, (04+) = 0 and ¢’ (1) > 0, then there exist
c6(z) > 0 such that

lim ¢2 e?<(MP,(Z, > 0) = c5(2),
t—o00
where T is the value at which ¢ attains its minimum.

iv) (Intermediately subcritical) If ¢, (04+) = 0 and ¢’ (1) = 0, then
there exist c¢; > 0 such that

tlim \/ze‘i’K(l)IP’z(Zt > 0) = zc7.
— 00

v) (Strongly subcritical)If ¢, (04+) = 0 and ¢/ (1) < 0 (+ some
moments conditions), then there exist ¢; > 0 such that

lim etd’K(l)Pz(Zt > 0) = zcs.

t—oc0
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