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Introduction

CB-processes.

A continuous-state branching process (or CB-process) is a non-negative
valued strong Markov process with probabilities (Px , x ≥ 0) such that for
any x , y ≥ 0, Px+y is equal in law to the convolution of Px and Py .

CB-processes may be thought of as the continuous (in time and space)
analogues of classical Galton-Watson branching processes.

More precisely, a CB-process Y = (Yt , t ≥ 0) is a Markov process taking
values in [0,∞], where 0 and ∞ are two absorbing states, and satisfying
the branching property.

In particular,

Ex

[
e−λYt

]
= exp{−xut(λ)}, for λ ≥ 0,

for some function ut(λ).
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Introduction

CB-processes.

A continuous-state branching process (or CB-process) is a non-negative
valued strong Markov process with probabilities (Px , x ≥ 0) such that for
any x , y ≥ 0, Px+y is equal in law to the convolution of Px and Py .

CB-processes may be thought of as the continuous (in time and space)
analogues of classical Galton-Watson branching processes.

More precisely, a CB-process Y = (Yt , t ≥ 0) is a Markov process taking
values in [0,∞], where 0 and ∞ are two absorbing states, and satisfying
the branching property.

In particular,

Ex

[
e−λYt

]
= exp{−xut(λ)}, for λ ≥ 0,

for some function ut(λ).



2/ 28

Continuous state branching processes in a Lévy random environment.
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The function ut(λ) is determined by the integral equation∫ λ

ut (λ)

1

ψ(u)
du = t

where ψ (branching mechanism of Y ) satisfies the Lévy-Khincthine
formula

ψ(λ) = −aλ+ γ2λ2 +

∫
(0,∞)

(
e−λx − 1 + λx1{x<1}

)
µ(dx ),

where a ∈ R, γ ≥ 0 and µ is a σ-finite measure such that∫
(0,∞)

(
1 ∧ x2

)
µ(dx ) <∞.

Observe Ex [Yt ] = xe−ψ
′(0+)t . Hence, in respective order, a CB-process is

called supercritical, critical or subcritical accordingly as ψ′(0+) < 0,
ψ′(0+) = 0 or ψ′(0+) > 0.
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Introduction

The probability of extinction is given by

Px

(
lim
t→∞

Yt = 0
)

= e−ηx ,

where η is the largest root of ψ.

A CB-process Y with branching mechanism ψ has a finite time extinction
almost surely if and only if∫ ∞ du

ψ(u)
<∞ and ψ′(0+) ≥ 0.
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A CB-process can also be defined as the unique non-negative strong
solution of the stochastic differential equation

Yt =Y0 + a

∫ t

0

Ysds +

∫ t

0

√
2γ2YsdBs

+

∫ t

0

∫
(0,1)

∫ Ys−

0

z Ñ (ds,dz ,du) +

∫ t

0

∫
[1,∞)

∫ Ys−

0

zN (ds,dz ,du),

where B = (Bt , t ≥ 0) is a standard Brownian motion, N is a Poisson
random measure independent of B , with intensity ds ⊗ µ(dz )⊗ du and
Ñ is its compensated version.
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CB-process in a Lévy random environment

We introduce a continuous state branching process in a Lévy random
environment (CBLRE) as the unique non-negative strong solution of the
stochastic differential equation

Zt =Z0 + a

∫ t

0

Zsds +

∫ t

0

√
2γ2ZsdBs

+

∫ t

0

ZsdSs

+

∫ t

0

∫
(0,1)

∫ Zs−

0

z Ñ (ds,dz ,du) +

∫ t

0

∫
[1,∞)

∫ Zs−

0

zN (ds,dz ,du),

where

St = αt + σB
(e)
t +

∫ t

0

∫
(−1,1)

(ez − 1)Ñ (e)(ds,dz )

+

∫ t

0

∫
R\(−1,1)

(ez − 1)N (e)(ds,dz ),
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with α ∈ R and σ ≥ 0, B (e) = (B
(e)
t , t ≥ 0) is a standard Brownian

motion and N (e)(ds,dz ) is a Poisson random measure in R+ × R
independent of B (e) with intensity dsπ(dy), Ñ (e) its compensated
version and π is a σ-finite measure satisfying∫

R
(1 ∧ z 2)π(dz ) <∞.

We will assume that all the objects involve in the branching and
environmental terms are mutually independent.

When |ψ′(0+)| <∞, we define the auxiliary process

Kt = mt+σB
(e)
t +

∫ t

0

∫
(−1,1)

vÑ (e)(ds,dv)+

∫ t

0

∫
R\(−1,1)

vN (e)(ds,dv),

where

m = α− σ2

2
−

∫
(−1,1)

(ev − 1− v)π(dv)− ψ′(0+).
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CB-process in a Lévy random environment

with α ∈ R and σ ≥ 0, B (e) = (B
(e)
t , t ≥ 0) is a standard Brownian

motion and N (e)(ds,dz ) is a Poisson random measure in R+ × R
independent of B (e) with intensity dsπ(dy), Ñ (e) its compensated
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Let C 2(R+) and D(R+) be the sets of functions with continues first and
second derivatives and the set of càdlàg functions, respectively.

Theorem
The previous stochastic differential equation has a unique non-negative
strong solution. The process Z = (Zt , t ≥ 0) is a Markov process and its
infinitesimal generator L satisfies, for every f ∈ C 2(R+),

Af (x) = (m + a)xf ′(x) +

(
γ2x +

σ2

2
x2

)
f ′′(x)

+ x

∫
(0,∞)

(
f (x + z )− f (x)− zf ′(x)1{z<1}

)
Λ(d z )

+

∫
R

(
f (xez )− f (x)− x(ez − 1)f ′(x)1{|z |<1}

)
π(d z ).

Furthermore, the process Z , conditionally on K , satisfies the branching
property and for |ψ′(0+)| <∞, we have for every t > 0

Ez

[
exp

{
− λZte

−Kt

}∣∣∣K] = exp
{
− zvt(0, λ,K )

}
a.s.,

where for every (λ, δ) ∈ (R+,D(R+)), vt : s ∈ [0, t ] 7→ vt(s, λ, δ)
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Theorem
is the unique solution of the backward differential equation

∂

∂s
vt(s, λ, δ) = eδsψ0(vt(s, λ, δ)e

−δs ),

with ψ0(λ) = ψ(λ)− λψ′(0+), and ψ is the branching mechanism of the
underlying CB-process.

Idea of the proof: First, we fix n ≥ 1 and prove the existence of a
positive weak solution of the SDE

Z n
t = Z n

0 + a

∫ t

0

(Z n
s ∧ n)ds +

∫ t

0

√
2γ2(Z n

s ∧ n)dBs +

∫ t

0

(Z n
s ∧ n)dSs (1)

+

∫ t

0

∫
(0,1)

∫ (Zn
s ∧n)−

0

(z ∧ n)Ñ (ds,dz , du) +

∫ t

0

∫
[1,∞)

∫ (Zn
s ∧n)−

0

(z ∧ n)N (ds,dz ,du).
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CB-process in a Lévy random environment

Similar techniques as those used in Dawson & Li (2012) provides the
pathwise uniqueness of (1). Basically, we take Z n and Z n,′ two solutions
of (1) and prove that the expectation of |Z n − Z n,′| equals 0.

Hence, the above arguments imply that there exists a unique
non-negative strong solution to (1).

For m ≥ 1 let τm = inf{t ≥ 0 : Zm
t ≥ m}. By a localization argument,

we may construct

Zt =

{
Zm
t if t < τm
∞ if t ≥ lim

m→∞
τm

which is a weak solution to our original equation.

Finally, let Z ′ and Z ′′ be two solutions of our original equation and also
consider τ ′m = inf{t ≥ 0 : Z ′t ≥ m}, τ ′′m = inf{t ≥ 0 : Z ′′t ≥ m} and
define τm = τ ′m ∧ τ ′′m .
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Then, Z ′ and Z ′′ satisfy (1) on [0, τm), so they are indistinguishable on
[0, τm). When τ∞ = lim

m→∞
τm <∞, Z ′ or Z ′′ have a jump of infinity size

in τ∞. This jump comes from an atom of N , so that both processes have
it and thus Z ′ and Z ′′ are indistinguishable. Then, the strong solution to
our original equation follows.

The strong uniqueness implies the strong Markov property. The form of
the generator follows from Itô’s formula.

The branching property of Zt conditionally on K , is inherited from the
CB-process.

Let Z̃t = Zte
−Kt and vt(s, λ,K ) is differentiable with respect to the

variable s, non-negative and such that vt(t , λ,K ) = λ for all λ ≥ 0.
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Applying Itô’s formula one obtain that exp{−Z̃tvt(s, λ,K )} conditionally
on K is a martingale if and only if for every t ≥ 0,

∂

∂s
vt(s, λ,K ) = −avt(s, λ,K ) + γ2(vt(s, λ,K ))2e−Ks

+ eKs

∫ ∞
0

(
e−e

−Ks vt (s,λ,K )z − 1 + e−Ks vt(s, λ,K )z1{z<1}

)
µ(dz ).
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In the case when |ψ′(0+)| = −∞, the auxiliary process is almost the
same. The only thing that changes is the drift which is given as follows

m = α− σ2

2
−

∫
(−1,1)

(ev − 1− v)π(dv).

In this case, one can deduce that vt(s, λ,K ) is the unique solution to

∂

∂s
vt(s, λ,K ) = eKsψ(vt(s, λ,K )e−Ks ).

In this case, the process Z , conditionally on K , satisfies

Ez

[
exp

{
− λZte

−Kt

}∣∣∣K ] = exp
{
− zvt(0, λ,K )

}
a.s.
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Examples

Neveu’s branching process: This example correspond to the case when

ψ(u) = u log u, u ≥ 0.

Observe that ψ′(0+) = −∞. In this case

vt(s, λ,K ) = exp

{
es
∫ t

s

e−uKudu + log λe−(t−s)
}
.

Then,

Ez

[
exp

{
−λZte

−Kt

}∣∣∣K ] = exp

{
−zλe

−t

exp

{∫ t

0

e−sKsds

}}
a.s.,

which implies that

Pz

(
Zt > 0

∣∣∣K) = 1, t > 0.
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Observe that

Ez

[
Zte
−Kt exp

{
− λZte

−Kt

}∣∣∣K ] = ze−tλe
−t−1

× exp

{∫ t

0

e−sKsds − zλe
−t

exp

{∫ t

0

e−sKsds

}}
.

This implies
Ez [Zt ] =∞, t > 0.

Moreover, when K is just a Brownian motion with drift, the r.v.∫ t

0
e−sKsds is Gaussian with mean (α− σ2

2 )(1− e−t − te−t) and

variance σ2

2 (1− 4e−t − 3e−2t).
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Continuous state branching processes in a Lévy random environment.

CB-process in a Lévy random environment

Feller’s diffusion

If a = µ(0,∞) = 0, the CBBRE is given by

Zt = Z0 + α

∫ t

0

Zsds + σ

∫ t

0

ZsdSs +

∫ t

0

√
2γ2ZsdBs .

The above is equivalent to the strong solution of the SDE

dZt =
σ2

2
Ztdt + ZtdKt +

√
2γ2ZsdBs

dKt =αdt + σdWt ,

which looks as the branching diffusion in random environment studied by
Böinghoff and Hutzenthaler (2011).
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Continuous state branching processes in a Lévy random environment.

CB-process in a Lévy random environment

Stable case. Here, the branching mechanism is of the form

ψ(λ) = −aλ+ cβλ
β+1, λ ≥ 0,

for some β ∈ (−1, 0) ∪ (0, 1), a ∈ R, and{
cβ < 0 if β ∈ (−1, 0),
cβ > 0 if β ∈ (0, 1).

Under this assumption, the process Z satisfies the following stochastic
differential equation

Zt = Z0 + a

∫ t

0

Zsds +

∫ t

0

Zs−dSs +

∫ t

0

∫ ∞
0

∫ Zs−

0

z N̂ (ds,dz ,du)

and

N̂ (ds,dz ,du) =

{
N (ds,dz ,du) if β ∈ (−1, 0),

Ñ (ds,dz ,du) if β ∈ (0, 1),

where N is an independent Poisson random measure with intensity

cββ(β + 1)

Γ(1− β)

1

z 2+β
dsdzdu,
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Continuous state branching processes in a Lévy random environment.

CB-process in a Lévy random environment

In this case, we note

ψ′(0+) =

{
−∞ if β ∈ (−1, 0),
−a if β ∈ (0, 1).

We use in both cases the backward differential equation of Theorem 1
and observe that it satisfies

∂

∂s
vt(s, λ, δ) = −avt(s, λ, δ) + cβv

β+1
t (s, λ, δ)e−βδs .

Therefore,

vt(s, λ, δ) = eas
(

(λeat)−β + βcβ

∫ t

s

e−β(δu+au)du

)−1/β
.

Implying the following a.s. identity

Ez

[
exp

{
− λZte

−Kt

}∣∣∣K] = exp

{
−z
(
λ−β + βcβ

∫ t

0

e−βKu du

)−1/β
}
.
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Continuous state branching processes in a Lévy random environment.

Long-term behaviour

Long-term behaviour

Similarly to the case of CB-processes, there are three events which are of
immediate concern for the process Z , explosion, absorption and
extinction.

Recall that ψ′(0+) ∈ [−∞,∞), and that whenever |ψ′(0+)| <∞, we
write

m = α− ψ′(0+)− σ2

2
−

∫
(−1,1)

(ev − 1− v)π(dv).

where

ψ′(0+) = −a −
∫
{x>1}

xµ(dx ).

Proposition

Assume |ψ′(0+)| <∞, then a CBPBRE Z with branching mechanism ψ
satisfies

Pz (Zt <∞) = 1, for all t > 0.
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Long-term behaviour

Long-term behaviour

Similarly to the case of CB-processes, there are three events which are of
immediate concern for the process Z , explosion, absorption and
extinction.

Recall that ψ′(0+) ∈ [−∞,∞), and that whenever |ψ′(0+)| <∞, we
write

m = α− ψ′(0+)− σ2

2
−

∫
(−1,1)

(ev − 1− v)π(dv).

where

ψ′(0+) = −a −
∫
{x>1}

xµ(dx ).

Proposition

Assume |ψ′(0+)| <∞, then a CBPBRE Z with branching mechanism ψ
satisfies

Pz (Zt <∞) = 1, for all t > 0.



19/ 28

Continuous state branching processes in a Lévy random environment.
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Continuous state branching processes in a Lévy random environment.

Long-term behaviour

Stable case with β ∈ (−1, 0).

Recall that in this case ψ(u) = −au + cβu
β+1, where a ∈ R and cβ is a

negative constant.

From straightforward computations, we get ψ′(0+) = −∞

From the Laplace transform of Z̃ (taking λ goes to 0), we deduce

Pz

(
Zt <∞

∣∣∣K) = exp

{
−z
(
βcβ

∫ t

0

e−β(Ku+au)du

)−1/β}
a.s.,

implying

Pz

(
Zt =∞

∣∣∣K) = 1− exp

{
−z
(
βcβ

∫ t

0

e−β(Ku+au)du

)−1/β}
> 0.
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Continuous state branching processes in a Lévy random environment.

Long-term behaviour

Neveu case.

In this case, recall that ψ(u) = u log u and in particular In particular

ψ′(0+) = −∞.

By taking λ goes to 0 in the Laplace exponent of Z̃ , one can see that the
process is conservative conditionally on the environment, i.e.

Pz (Zt <∞|K ) = 1,

for all t ∈ (0,∞) and z ∈ [0,∞).
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Continuous state branching processes in a Lévy random environment.

Long-term behaviour

Proposition

Assume that |ψ′(0+)| <∞. Let (Zt , t ≥ 0) be a CBPBRE with
branching mechanism given by ψ.

i) If K drifts to −∞, then Pz

(
lim
t→∞

Zt = 0
∣∣∣K) = 1, a.s.

ii) If K oscillates, then Pz

(
lim inf
t→∞

Zt = 0
∣∣∣K) = 1, a.s.

Moreover if γ > 0 then

Pz

(
lim
t→∞

Zt = 0
∣∣∣K) = 1, a.s.
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Long-term behaviour

Proposition

Assume that |ψ′(0+)| <∞. Let (Zt , t ≥ 0) be a CBPBRE with
branching mechanism given by ψ.

i) If K drifts to −∞, then Pz

(
lim
t→∞

Zt = 0
∣∣∣K) = 1, a.s.

ii) If K oscillates, then Pz

(
lim inf
t→∞

Zt = 0
∣∣∣K) = 1, a.s.

Moreover if γ > 0 then

Pz

(
lim
t→∞

Zt = 0
∣∣∣K) = 1, a.s.



22/ 28

Continuous state branching processes in a Lévy random environment.
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Continuous state branching processes in a Lévy random environment.

Long-term behaviour

Proposition

iii) If K drifts to +∞ and∫ ∞
x ln(x )µ(dx ) <∞,

then Pz

(
lim inf
t→∞

Zt > 0
∣∣∣K) > 0 a.s., and there exists a non-negative

finite r.v. W such that

Zte
−Kt −→

t→∞
W , a.s and

{
W = 0

}
=
{

lim
t→∞

Zt = 0
}
.

Moreover if γ > 0, we have

Pz

(
lim
t→∞

Zt = 0
)
≥
(

1 +
zσ2

γ2

)− 2m
σ2

.
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Continuous state branching processes in a Lévy random environment.

Long-term behaviour

It is important to note that in the Feller and stable cases, i.e.
ψ(u) = −au + cβu

β+1 for β ∈ (0, 1], one can deduce directly that

lim
t→∞

Zt = 0, a.s.,

whenever K does not drift to +∞.

In the case when K drifts to +∞, we have

Pz ( lim
t→∞

Zt = 0|K ) = exp

{
−z
(
βcβ

∫ ∞
0

e−βKu du

)−1/β}
, a.s.,

and in particular

P
(
W = 0

)
= Pz

(
lim
t→∞

Zt = 0
)

= Ez

[
exp

{
−z
(
βcβ

∫ ∞
0

e−βKu du

)−1/β
}]

.

The latter probability can be computed explicitly in some specific cases.
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Continuous state branching processes in a Lévy random environment.

Long-term behaviour

Neveu case. Recall that the Neveu CBPBRE process Z satisfies

P(0 < Zt <∞) = 1,

for all t ∈ (0,∞) and z ∈ (0,∞).

On the one hand, we have that

lim
t→∞

∫ t

0

e−sKsds = σ

∫ ∞
0

e−sdKs + α− σ2

2
,

exists whenever E[log |K1|] <∞. In the case where K is a Brownian

motion, the latter r.v. is Gaussian with mean α− σ2

2 and variance σ2

2 .
Hence,

Ez

[
exp

{
− λ lim

t→∞
Zte
−Kt

}∣∣∣K ] = exp

{
−z exp

{∫ ∞
0

e−sKsds

}}
.

implying

Pz

(
lim
t→∞

Zte
−Kt = 0

)
= E

[
exp

{
−z exp

{∫ ∞
0

e−sKsds

}}]
.
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Continuous state branching processes in a Lévy random environment.

Stable case

Theorem
Let (Zt , t ≥ 0) be the stable CBLRE with index β ∈ (−1, 0) and
Z0 = z > 0.

i) Subcritical-explosion. If φ′K (0+) < 0, then there exist c1(z ) > 0
such that

lim
t→∞

Pz (Zt <∞) = c1(z ).

ii) Critical-explosion. If φ′K (0+) = 0, then then there exist c2(z ) > 0
such that

lim
t→∞

√
tPz (Zt <∞) = c2(z ).

iii) Supercritical-explosion. If φ′K (0+) > 0 then there exist c3(z ) > 0

lim
t→∞

t
3
2 eφK (τ)Pz (Zt <∞) = c3(z ),

where τ is the value at which φK attains its minimum.
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Continuous state branching processes in a Lévy random environment.

Stable case

Theorem
Let (Zt , t ≥ 0) be a the stable CBLRE with β ∈ (0, 1). Then for all
z > 0,

i) (Supercritical case) If φ′K (0+) > 0, then there exist c4(z ) > 0 such
that

lim
t→∞

Pz (Zt > 0) = c4(z ).

ii) (Critical case) If φ′K (0+) = 0, then there exist c5(z ) > 0 such that

lim
t→∞

√
tPz (Zt > 0) = c5(z ).
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Continuous state branching processes in a Lévy random environment.

Stable case

Theorem

iii) (Weakly subcritical) If φ′K (0+) = 0 and φ′K (1) > 0, then there exist
c6(z ) > 0 such that

lim
t→∞

t
3
2 eφK (τ)Pz (Zt > 0) = c6(z ),

where τ is the value at which φK attains its minimum.

iv) (Intermediately subcritical) If φ′K (0+) = 0 and φ′K (1) = 0, then
there exist c7 > 0 such that

lim
t→∞

√
teφK (1)Pz (Zt > 0) = zc7.

v) (Strongly subcritical)If φ′K (0+) = 0 and φ′K (1) < 0 (+ some
moments conditions), then there exist c7 > 0 such that

lim
t→∞

etφK (1)Pz (Zt > 0) = zc8.
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