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Reflected & Refracted Lévy Processes

m Reflected Lévy processes: where

m Refracted Lévy processes (Kyprianou and Loeffen, 2009)
O A strong Markov process given by the unique strong sol'n to the SDE

O Namely, A progresses like X below the boundary b while it does like

above




Refracted-Reflected Lévy Processes

m Refracted at an upper boundary b, and
m Reflected at a lower boundary

Step 0 Set A , then set and go to Step
1. Otherwise, set and go to Step 2.

Step 1 Let be the refracted Lévy process (with
refraction level b) that starts at the time 7 at the level

, and . Set for all
. Then go to Step 2.

Step 2 Let be the Lévy process reflected at the

lower boundary O that starts at time 7 at 0, and
. Set for all

. Then go to Step 1.
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Decomposition

We have a decomposition:

In particular, we have

and for the case of bounded variation




Applications

® M/G/1 queues with abandonments
O (reflection) The length of queues does not go negative.
O (refraction) When the queue is long, some people may decide not to
line up.
m Optimal dividends with capital injection
O (reflection) Pay dividends at a constant rate 0 when it is above
O (refraction) Must inject capital to prevent it from going below zero.
m Optimal dividends with both singular and absolutely continuous
control
O (reflection) Pay dividends at a constant rate 0 when it is above
O (refraction) Pay dividends so that it does not go above



Objective
We compute fluctuation identities — with .

m Resolvents:

m expected NPVs (net present value) of total discounted | and

® |aplace transform of occupation time:
and
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Usual Tricks

Define

® The drift-changed process

® The reflected process UJ: X reflected at lower level
Almost surely, under P, for any , we have

L on ,

n on and

In view of this, we use the fluctuation theory written in terms of the
scale function of ¥ and U together with the strong Markov property

of




SN Lévy Processes and Laplace Exponents

m Given a SN Lévy process , the Laplace exponent is

® []is a Lévy measure such that .
® |t has paths of bounded variation if and only if and

m For the case of bounded variation, we can write

with




Scale Functions

= We use and for the scale functions of X and Y/,
respectively. Namely, these are defined by

where




Fluctuations of Lévy Processes

m | et us define
and

® Then, for any and ,

where
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Resolvents and Overshoot

® The g-resolvent measure is

® |t is known that a spectrally negative Lévy process creeps
downwards (i.e. for ) iff

m Hence, for the case of bounded variation,
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Fluctuation of Reflected Processes

m et
® |ts resolvent is

® |n particular,

m |f so that
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Resolvents

For , and a Borel set 5 on ,

where
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Sketch of Proof 1 (Bounded Var. Case)

For , using the strong Markov property and because
(hitting time of (/) and :
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Sketch of Proof 2 (Bounded Var. Case)

For because (hitting time of ') and on
and
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Sketch of Proof 3 (Bounded Var. Case)

Solving for (4 using some simplification formula), we
obtain

Plugging this back in the previous relations, we obtain
for all
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Extension to Unbounded Var. Case

1. Given a stochastic process , a sequence of processes
is strongly approximating for ¢, if
for any a.s.

2. For any X of unbounded variation, we can construct a strongly
approximating sequence of bounded variation. The
corresponding refracted-reflected processes are strongly
approximating for

3. The corresponding scale functions and converge to

and

— Alternative proof — via excursion theory.
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Resolvents (Cont’d)
(i) For

(ii) For and (or a.s.), then

For and , it becomes infinity given
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Application of Resolvents

For any and , we have

In particular, -a.s.
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Application of Resolvents (Cont’d)

Recall

® For any , we have

m Fix . For , we have
For , it becomes infinity.
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Capital Injection

Assume and . For any , we have

where
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Occupation Time
For any , , and ,

where
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Optimization w/ singular&abs. cont. control

® Joint work with B. Avanzi, B. Wong, and J.L. Pérez.

® Y is a spectrally positive Lévy process.
® A dividend strategy

0 S7: usual control (nondecreasing, right-continuous, and adapted)
o . absolutely continuous control , , with
restricted to take values in uniformly in time.

® The controlled risk process becomes
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Optimization w/ singular&abs. cont. control

® We want to maximize

where

is the time to ruin.
m To activate 57, one needs to pay (proportional) costs:

m is a terminal reward/penalty.
m let A be the set of all admissible strategies that satisfy the above
conditions and
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Two layer -strategy

® |t is conjectured that it is optimal to

O activate absolutely continuous control A when the process is above
O activate singular control S when the process is above

® Under two-layer -strategy, the controlled process becomes the
refracted-reflected process — flipped case of the ones discussed.
B |et

with its ruin time
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NPV under two layer -strategy

For all and , we have

where we define, for
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Selection of

1. If condition

holds, then is continuously differentiable (resp. twice
continuously differentiable) at / when Y has paths of bounded
(resp. unbounded) variation.

2. Additionally if condition

holds, then is continuously differentiable (resp. twice
continuously differentiable) at 2 when Y has paths of bounded
(resp. unbounded) variation.
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Existence of

® We have
m|f gets tangent to the x-axis at , then
necessarily
There exist a pair such that one of the following holds.
(i) w/ :
(ii-1) w/ and , and
(ii-2) w/

28 of 35



Form of

m For ,

where in particular

®m On the other hand, for ,

®m For both cases, it can be confirmed that
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Verification lemma

Suppose 7 is an admissible dividend strategy such that

1. v; is sufficiently smooth ( [resp. | when X has
paths of bounded [resp. unbounded] variation) on

2. it satisfies

3.

Then for all and hence 7 is an optimal strategy.



Main results

Lemma
The function is concave and the following holds:
1. For , we have ;
2. For , we have
3. Suppose . For , we have
4. Suppose . For , we have
(i) For ,
Theorem
The two-layer (a*, b*) strategy for is optimal, and the value
function is given by for all



Numerical results

Value

Figure: Sensitivity of the value function v(x) with respect to p := gp/d.



Numerical results

Figure: Sensitivity of the value function v(x) with respect to
3 = [0.01,0.02, 0.03,0.04,0.05, 0.1, ..., 0.90, 0.95, 0.96, 0.97, 0.98, 0.99].
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Numerical results

Figure: Sensitivity of the value function v(x) with respect to
§ = [0.01,0.04,0.07,0.1,0.2, ..., 2.9, 3].

34 of 35



References

[1] J. L. Pérez, K. Yamazaki. On the Refracted-Reflected Spectrally
Negative Lvy Processes. arXiv:1511.06027, 2015.

[2] J. L. Pérez, K. Yamazaki. Refraction-reflection strategies in the dual
model. arXiv:1511.07918, 2015.

[3] B. Avanzi, J. L. Pérez, B. Wong, K. Yamazaki. On the Joint Reflective
and Refractive Dividend Strategies in Spectrally Positive Lévy
Processes. arXiv:1607.01902, 2016.

35 of 35



