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Reflected & Refracted Lévy Processes

� Reflected Lévy processes: Ut := Xt − Lt where

Lt := sup
0≤t′≤t

(Xt′ − b) ∨ 0, t ≥ 0.

� Refracted Lévy processes (Kyprianou and Loeffen, 2009)
� A strong Markov process given by the unique strong sol’n to the SDE

dAt = dXt − δ1{At>b}dt, t ≥ 0.

� Namely, A progresses like X below the boundary b while it does like

Yt := Xt − δt, t ≥ 0,

above b.
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Refracted-Reflected Lévy Processes

� Refracted at an upper boundary b, and

� Reflected at a lower boundary 0.

Step 0 Set V0− = x . If x ≥ 0, then set τ := 0 and go to Step
1. Otherwise, set τ := 0 and go to Step 2.

Step 1 Let {Ãt ; t ≥ τ} be the refracted Lévy process (with
refraction level b) that starts at the time τ at the level
x , and τ := inf{t > τ : Ãt < 0}. Set Vt = Ãt for all
τ ≤ t < τ . Then go to Step 2.

Step 2 Let {Ũt ; t ≥ τ} be the Lévy process reflected at the
lower boundary 0 that starts at time τ at 0, and
τ := inf{t > τ : Ũt > b}. Set Vt = Ũt for all
τ ≤ t < τ . Then go to Step 1.
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Decomposition

We have a decomposition:

Vt = Xt + Rt − Lt , t ≥ 0.

In particular, we have

Lt = δ

∫ t

0
1{Vs>b}ds, t ≥ 0,

and for the case of bounded variation

Rt =
∑

t≥0:Vt−+∆Xt<0

|Vt− + ∆Xt | t ≥ 0.
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Applications

� M/G/1 queues with abandonments
� (reflection) The length of queues does not go negative.
� (refraction) When the queue is long, some people may decide not to

line up.

� Optimal dividends with capital injection
� (reflection) Pay dividends at a constant rate δ when it is above b.
� (refraction) Must inject capital to prevent it from going below zero.

� Optimal dividends with both singular and absolutely continuous
control
� (reflection) Pay dividends at a constant rate δ when it is above a.
� (refraction) Pay dividends so that it does not go above b(> 0).
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Objective
We compute fluctuation identities – with T+

a := inf{t > 0 : Vt > a},
� Resolvents:

Ex

(∫ T+
a

0
e−qt1{Vt∈B}dt

)
� expected NPVs (net present value) of total discounted L and R:

Ex

(∫ T+
a

0
e−qtdLt

)
and Ex

(∫
[0,T+

a ]
e−qtdRt

)
.

� Laplace transform of occupation time:

Ex

(
e−pT

+
a −q

∫ T+
a

0 1{Vs<b}ds

)
and Ex

(
e−pT

+
a −q

∫ T+
a

0 1{Vs>b}ds

)
.
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Usual Tricks

Define

� The drift-changed process Yt := Xt − δt.

� The reflected process U: X reflected at lower level 0.

Almost surely, under Px for any x ∈ R, we have

� Vt = Ut on 0 ≤ t ≤ T+
b ,

� Vt = Yt on 0 ≤ t < T−b and VT−b −
+ ∆XT−b

= Yτ−b
.

In view of this, we use the fluctuation theory written in terms of the
scale function of Y and U together with the strong Markov property
of V .
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SN Lévy Processes and Laplace Exponents
� Given a SN Lévy process X = {Xt ; t ≥ 0}, the Laplace exponent is

ψ(θ) := logE[eθX1 ] = γθ +
σ2

2
θ2

+

∫
(−∞,0)

(eθz − 1− θz1{z>−1})Π(dz), θ ≥ 0.

� Π is a Lévy measure such that
∫

(−∞,0)(1 ∧ z2)Π(dz) <∞.
� It has paths of bounded variation if and only if σ = 0 and∫

(−1,0) |z |Π(dz) <∞.
� For the case of bounded variation, we can write

ψ(θ) = γ̃θ +

∫
(−∞,0)

(eθz − 1)Π(dz), θ ≥ 0,

with γ̃ := γ −
∫

(−1,0) z Π(dz).
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Scale Functions

� We use W (q) and W(q) for the scale functions of X and Y ,
respectively. Namely, these are defined by∫ ∞

0
e−θxW (q)(x)dx=

1

ψ(θ)− q
, θ > Φ(q),∫ ∞

0
e−θxW(q)(x)dx=

1

ψ(θ)− δθ − q
, θ > ϕ(q),

where

Φ(q):= sup{λ ≥ 0 : ψ(λ) = q},
ϕ(q):= sup{λ ≥ 0 : ψ(λ)− δλ = q}.
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Fluctuations of Lévy Processes
� Let us define

τ−a := inf {t > 0 : Yt < a} and τ+
a := inf {t > 0 : Yt > a}.

� Then, for any a > b and x ≤ a,

Ex

(
e−qτ

+
a 1{τ+

a <τ
−
b }
)

=
W(q)(x − b)

W(q)(a− b)
,

Ex

(
e−qτ

−
b 1{τ+

a >τ
−
b }
)

= Z(q)(x − b)− Z(q)(a− b)
W(q)(x − b)

W(q)(a− b)
,

where

W(q)
(x) :=

∫ x

0
W(q)(y)dy ,

Z(q)(x) := 1 + qW(q)
(x).
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Resolvents and Overshoot
� The q-resolvent measure is

Ex

(∫ τ−b ∧τ
+
a

0
e−qt1{Yt∈dy}dt

)
=
[W(q)(x − b)W(q)(a− y)

W(q)(a− b)

−W(q)(x − y)
]
dy .

� It is known that a spectrally negative Lévy process creeps
downwards (i.e. Px(Yτ−b

= b, τ−b <∞) > 0 for x > b) iff σ > 0.
� Hence, for the case of bounded variation,

Ex

(
e−qτ

−
b l(Yτ−b

)1{τ−b <τ
+
a }

)
=

∫ a−b

0

∫
(−∞,−y)

l(y + u + b){
W(q)(x − b)W(q)(a− b − y)

W(q)(a− b)
−W(q)(x − b − y)

}
Π(du)dy .
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Fluctuation of Reflected Processes
� Let κ+

b := inf{t > 0 : Ut > b}.
� Its resolvent is

Ex

(∫ κ+
b

0
e−qt1{Ut∈B}dt

)
=

Z (q)(x)

Z (q)(b)

∫ b

0
W (q)(b − y)1{y∈B}dy

−
∫ x

0
W (q)(x − y)1{y∈B}dy .

� In particular, Ex

(
e−qκ

+
b

)
= Z (q)(x)/Z (q)(b).

� If R̃t := sups≤t(−Xt) ∨ 0 so that Ut = Xt + R̃t ,

Ex

(∫
[0,κ+

b ]
e−qtdR̃t

)
= −

(
Z

(q)
(x) +

ψ′(0+)

q

)
+
(
Z

(q)
(b) +

ψ′(0+)

q

)Z (q)(x)

Z (q)(b)
.
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Resolvents
For q ≥ 0, x ≤ a and a Borel set B on [0, a],

Ex

(∫ T+
a

0
e−qt1{Vt∈B}dt

)
=

∫
B

(
w (q)(a, z)

r (q)(x)

r (q)(a)
− w (q)(x , z)

)
dz ,

where

r (q)(x) := Z (q)(x) + qδ

∫ x

b
W(q)(x − y)W (q)(y)dy ,

w (q)(x , z) := 1{0<z<b}

(
W (q)(x − z)

+ δ

∫ x

b
W(q)(x − y)W (q)′(y − z)dy

)
+ 1{b<z<a}W(q)(x − z).
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Sketch of Proof 1 (Bounded Var. Case)

For x < b, using the strong Markov property and because T+
b = κ+

b
(hitting time of U) and Vt = Ut ,

f (q)(x , a;B) = Ex

(∫ κ+
b

0
e−qt1{Ut∈B}dt

)
+ Ex

(
e−qκ

+
b
)
f (q)(b, a;B)

=
Z (q)(x)

Z (q)(b)

[ ∫ b

0
W (q)(b − y)1{y∈B}dy + f (q)(b, a;B)

]
−
∫ x

0
W (q)(x − y)1{y∈B}dy .
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Sketch of Proof 2 (Bounded Var. Case)
For x ≥ b because T−b = τ−b (hitting time of Y ) and Vt = Yt on
0 ≤ t < T−b and VT−b −

+ ∆XT−b
= Yτ−b

,

f (q)(x , a;B) = Ex

(∫ τ+
a ∧τ

−
b

0
e−qt1{Yt∈B}dt

)
+ Ex

(
e−qτ

−
b f (q)(Yτ−b

, a;B)1{τ−b <τ
+
a }

)
=

∫ a

b
1{y∈B}

{
W(q)(x − b)W(q)(a− y)

W(q)(a− b)
−W(q)(x − y)

}
dy

+

∫ a−b

0

∫
(−∞,−y)

f (q)(y + u + b, a;B)

×

{
W(q)(x − b)W(q)(a− b − y)

W(q)(a− b)
−W(q)(x − b − y)

}
Π(du)dy .
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Sketch of Proof 3 (Bounded Var. Case)

Solving for f (q)(b, a;B) (+ using some simplification formula), we
obtain

f (q)(b, a;B) = Z (q)(b)

∫
B w (q)(a, z)dz

r (q)(a)
−
∫ b

0
W (q)(b − y)1{y∈B}dy .

Plugging this back in the previous relations, we obtain f (q)(x , a;B)
for all x ≥ 0.
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Extension to Unbounded Var. Case

1. Given a stochastic process (ξs ; s ≥ 0), a sequence of processes

{(ξ(n)
s )s≥0; n ≥ 1} is strongly approximating for ξ, if

limn↑∞ sup0≤s≤t |ξs − ξ
(n)
n | = 0 for any t > 0 a.s.

2. For any X of unbounded variation, we can construct a strongly
approximating sequence X (n) of bounded variation. The
corresponding refracted-reflected processes V (n) are strongly
approximating for V .

3. The corresponding scale functions W
(q)
n and W(q)

n converge to
W (q) and W(q).

– Alternative proof – via excursion theory.
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Resolvents (Cont’d)
(i) For q > 0,

Ex

(∫ ∞
0

e−qt1{Vt∈B}dt

)
=

∫
B

(e−ϕ(q)z1{b<z} + δ1{0<z<b}
∫∞
b e−ϕ(q)uW (q)′(u − z)du

δq
∫∞
b e−ϕ(q)yW (q)(y)dy

r (q)(x)

− w (q)(x , z)
)
dz .

(ii) For q = 0 and ψ′Y (0+) > 0 (or Yt
t↑∞−−→∞ a.s.), then

Ex

(∫ ∞
0

1{Vt∈B}dt

)
=

∫
B

(1{b<z} + 1{0<z<b}
(
1− δ−1W (b − z)

)
ψ′Y (0+)

− w (0)(x , z)
)
dz .

For q = 0 and ψ′Y (0+) ≤ 0, it becomes infinity given Leb(B) > 0.
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Application of Resolvents

For any q ≥ 0 and x ≤ a, we have

Ex

(
e−qT

+
a

)
=

r (q)(x)

r (q)(a)
.

In particular, T+
a <∞ Px -a.s.
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Application of Resolvents (Cont’d)
Recall

Lt = δ

∫ t

0
1{Vs>b}ds, t ≥ 0.

� For any q ≥ 0, x ≤ a we have

Ex

(∫ T+
a

0
e−qtdLt

)
= δW(q)

(a− b)
r (q)(x)

r (q)(a)
− δW(q)

(x − b).

� Fix x ∈ R. For q > 0, we have

Ex

(∫ ∞
0

e−qtdLt

)
= e−ϕ(q)b r (q)(x)

ϕ(q)q

∫ ∞
b

e−ϕ(q)yW (q)(y)dy

− δW(q)
(x − b).

For q = 0, it becomes infinity.
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Capital Injection

Assume ψ′(0+) > −∞ and q > 0. For any x ≤ a, we have

Ex

(∫
[0,T+

a ]
e−qtdRt

)
= r̃ (q)(a)

r (q)(x)

r (q)(a)
− r̃ (q)(x),

Ex

(∫
[0,∞)

e−qtdRt

)
= −r̃ (q)(x) +

(∫ ∞
b

e−ϕ(q)(y−b)Z (q)(y)dy

)
× r (q)(x)

q
∫∞
b e−ϕ(q)(y−b)W (q)(y)dy

,

where

r̃ (q)(x) := Z
(q)

(x) +
ψ′(0+)

q
+ δ

∫ x

b
W(q)(x − y)Z (q)(y)dy , x ∈ R.
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Occupation Time
For any p ≥ 0, q ≥ −p, a > 0 and x ≤ a,

Ex

(
e−pT

+
a −q

∫ T+
a

0 1{Vs<b}ds

)
=
R(p,q)(x)

R(p,q)(a)
,

Ex

(
e−pT

+
a −q

∫ T+
a

0 1{Vs>b}ds

)
=
L(p,q)(x)

L(p,q)(a)
,

where

R(p,q)(x) := Z (p+q)(x)− qW(p)
(x − b)

− (p + q)

∫ x

b
W(p)(x − y)

(
qW

(p+q)
(y)− δW (p+q)(y)

)
dy ,

L(p,q)(x) = Z (p)(x) + qW(p+q)
(x − b)

+ p

∫ x

b
W(p+q)(x − y)

(
qW

(p)
(y) + δW (p)(y)

)
dy .
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Optimization w/ singular&abs. cont. control

� Joint work with B. Avanzi, B. Wong, and J.L. Pérez.

� Y is a spectrally positive Lévy process.
� A dividend strategy π := (Aπt ,S

π
t ; t ≥ 0)

� Sπ: usual control (nondecreasing, right-continuous, and adapted)
� Aπ: absolutely continuous control Aπt =

∫ t

0
aπs ds, t ≥ 0, with aπ

restricted to take values in [0, δ] uniformly in time.

� The controlled risk process becomes

Uπ
t := Yt − Aπt − Sπt , t ≥ 0.
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Optimization w/ singular&abs. cont. control
� We want to maximize

vπ(x) = Ex

(∫ σπ

0
e−qtdAπt + β

∫
[0,σπ]

e−qtdSπt + ρe−qσ
π

)
,

where

σπ := inf{t > 0 : Uπ
t < 0},

is the time to ruin.
� To activate Sπ, one needs to pay (proportional) costs:Sπ:

0 < β < 1.

� ρ ∈ R is a terminal reward/penalty.
� Let A be the set of all admissible strategies that satisfy the above

conditions and

∆Sπt ≤ Uπ
t− + ∆Yt , t ≥ 0.
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Two layer (a, b)-strategy

� It is conjectured that it is optimal to
� activate absolutely continuous control A when the process is above a.
� activate singular control S when the process is above b > a.

� Under two-layer (a, b)-strategy, the controlled process becomes the
refracted-reflected process – flipped case of the ones discussed.

� Let

va,b(x) = Ex

(∫ σa,b

0
e−qtdAa,b

t + β

∫
[0,σa,b]

e−qtdSa,b
t + ρe−qσa,b

)
,

with its ruin time

σa,b := σπa,b = inf{t > 0 : Ua,b
t := Yt − Aa,b

t − Sa,b
t < 0}.
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NPV under two layer (a, b)-strategy

For all 0 ≤ a < b and x ≥ 0, we have

va,b(x) = −Γ(a, b)

q

r
(q)
b−a(b − x)

r
(q)
b−a(b)

+
δ

q
Z(q)(a− x)− β r̃ (q)

b−a(b − x),

where we define, for 0 ≤ a ≤ b,

Γ(a, b) := δZ(q)(a)− qρ− qβ r̃
(q)
b−a(b),

r
(q)
b−a(z) := Z (q)(z) + qδ

∫ z

b−a
W(q)(z − y)W (q)(y)dy ,

r̃
(q)
b−a(z) := Z

(q)
(z) +

ψ′(0+)

q
+ δ

∫ z

b−a
W(q)(z − y)Z (q)(y)dy .
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Selection of (a∗, b∗)

1. If condition
Cb : Γ(a, b) = 0

holds, then va,b is continuously differentiable (resp. twice
continuously differentiable) at b when Y has paths of bounded
(resp. unbounded) variation.

2. Additionally if condition

C′a : γ(a, b) := β−1 − Z (q)(b − a) = 0

holds, then va,b is continuously differentiable (resp. twice
continuously differentiable) at a when Y has paths of bounded
(resp. unbounded) variation.
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Existence of (a∗, b∗)

� We have ∂
∂aΓ(a, b) = δqβW(q)(a)γ(a, b).

� If a 7→ Γ(a, b∗) gets tangent to the x-axis at a∗ > 0, then
necessarily Γ(a∗, b∗) = γ(a∗, b∗) = 0.

There exist a pair (a∗, b∗) such that one of the following holds.

(i) a∗ = b∗ = 0 w/ Γ(0) = δ − qρ− βψ′X (0+) ≤ 0.

(ii-1) a∗ = 0 < b∗ w/ Γ(a∗, b∗) = 0 and β−1 − Z (q)(b∗) ≥ 0, and
Γ(0) > 0.

(ii-2) 0 < a∗ < b∗ w/ Γ(a∗, b∗) = γ(a∗, b∗) = 0, and Γ(0) > 0.
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Form of va∗,b∗

� For b∗ > 0,

va∗,b∗(x) =
δ

q
Z(q)(a∗ − x)− β r̃ (q)

b∗−a∗(b
∗ − x), x ≥ 0,

where in particular

va∗,b∗(x) =
δ

q
− β

(
Z

(q)
(b∗ − x) +

ψ′(0+)

q

)
, a∗ ≤ x ,

va∗,b∗(x) = β
(
x − b∗ −

ψ′X (0+)

q

)
+
δ

q
, x ≥ b∗.

� On the other hand, for a∗ = b∗ = 0,

v0,0(x) = βx + ρ, x ≥ 0.

� For both cases, it can be confirmed that

va∗,b∗(0) = lim
x↓0

va∗,b∗(x) = ρ.
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Verification lemma

Suppose π̂ is an admissible dividend strategy such that

1. vπ̂ is sufficiently smooth (C 1(0,∞) [resp. C 2(0,∞)] when X has
paths of bounded [resp. unbounded] variation) on (0,∞),

2. it satisfies

sup
0≤r≤δ

(
(LY − q)vπ̂(x)− rv ′π̂(x) + r

)
≤ 0, x > 0,

v ′π̂(x) ≥ β, x > 0.

3. ρ = vπ̂(0) ≤ limx↓0 vπ̂(x).

Then vπ̂(x) = v(x) for all x ≥ 0 and hence π̂ is an optimal strategy.
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Main results

Lemma
The function va∗,b∗ is concave and the following holds:

1. For x > a∗, we have β ≤ v ′a∗,b∗(x) ≤ 1;

2. For 0 < x < a∗, we have v ′a∗,b∗(x) ≥ 1 > β.

3. Suppose a∗ > 0. For 0 < x < a∗, we have (LY − q)va∗,b∗(x) = 0.

4. Suppose b∗ > 0. For a∗ < x < b∗, we have
(LX − q)va∗,b∗(x) + δ = 0.

(iii) For x > b∗, (LX − q)va∗,b∗(x) + δ ≤ 0.

Theorem
The two-layer (a∗, b∗) strategy for (a∗, b∗) is optimal, and the value
function is given by v(x) = va∗,b∗(x) for all 0 ≤ x <∞.
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Numerical results
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Figure: Sensitivity of the value function v(x) with respect to ρ̄ := qρ/δ.
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Numerical results
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Figure: Sensitivity of the value function v(x) with respect to
β = [0.01, 0.02, 0.03, 0.04, 0.05, 0.1, ..., 0.90, 0.95, 0.96, 0.97, 0.98, 0.99].
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Numerical results
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Figure: Sensitivity of the value function v(x) with respect to
δ = [0.01, 0.04, 0.07, 0.1, 0.2, . . . , 2.9, 3].
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