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Exit problem for a spectrally negative process:
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Kyprianou—Loeffen (2010), exit problem for a refracted Lévy process:
dUt — dXt —+ Oé].{Ut_<0}dt (2)
for X being a spectrally negative (non-monotonic) Lévy process
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Generalize Kyprianou—Loeffen’s results to a process such that
( law
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for two spec. neg. X and Y where Y — X is not a positive drift.




1 Construction

Kyprianou—Loeffen’s SDE:

,

dX Ui >0

dUt — dXt —+ al{Ut_<0}dt — < ‘ ( = ) (5)
d(X;+at) (Us- < 0)

One may expect to generalize it by the following SDE:

(
dX; (Ui- >0)
dU; = 14y, _>03dX: + 1y, _<03dY: = < (6)
dY; (Ui— <0)
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where X and Y are independent. In the special case Y; = X; + at,
although the SDE (5) is apparently different from (6), the solutions of

them are equivalent in law.
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dX; (Ui- 20)

dY: (Ui- <0) ©)

dU; = 1y, _>01dX: + 14y, <03dY: = <

\

In the case X is of bounded variation, we can construct a solution to
(6) in the same way as Kyprianou—Loeffen. This is as follows: If we
have constructed U; up to the (n — 1)th time of zero for U, which we

call T,,_4, then U; for T),_1 < t < T, is defined as

Ut :Xt — XTn—l (Tn—l <t S Tfrlz = il’lf{t > Tn—l . Ut < 0})

U =Ur +Y: — Y, (T) <t<T,:=inf{t >T, :U, =0})

In the general case, however, we do not know how to prove existence

of a solution to (6)...



Recall the proof of the uniqueness for the Kyprianou—Loeffen’s SDE:
dUt — dXt —+ al{Ut_<0}dt, (2)

Let U, { = 1, 2 be two solutions with a common driving noise X.

Then the difference A, := Ut(l) — Ut(z) satisfies

t
2 __
At = 2(1/0 AS (1{U§1_)<0} — 1{U§2_)<0}> ds S 0. (7)

For the general SDE: )
dX; (Ui- =0)
dU; = 1y, _>03d Xt + 1y, _<o03dY: = < (6)
dY; (U;- <0)

\

the uniqueness can be easily obtained if X and Y are both compound
Poisson with drifts. In the general case, however, we do not know

how to prove existence nor uniqueness for (6)...



We discard the SDE approach and appeal to the excursion theory.

Assume: X and Y are spectrally negative Lévy processes of

unbounded variation and X has no Gaussian component

n*: the excursion measure away from zero with normalization:
X —qT, 1 / —1
1—em "] = = T (T (9))

where ¥ x(q) = log EJ [ele]. This identity is equivalent to

EX [/ e_qtst] = rgg)(O, 0),
0

which shows that the local time L, at zero is chosen via Revuz’s

correspondence between L; and the Dirac delta at zero.
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Define n

’I’LU
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U and IP’;] as follows:

POy 0,:0) | =

0 0
pPY [F((Ut )t<fo"9m U0>] =PX |E;
Thm 1| U is a Feller process.
Thm 2| nY satisfies
v [1 — e 90| — !
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Rem 3| If Y has Gaussian component, then we may define

nY () =c™nV Q7))+ n(;07) (13)
QT ={U; > 0 for any small ¢t > 0} (14)
O~ ={U; < 0 for any small ¢t > 0} (15)
nU , .0 _ : +| =X Y?° w, YO -
(0,00, 0) 50| =n* B [P, ¥0) x| 09
_ BRGIS
nV [F(U);ﬂ—} —nY [F(Y)] (17)

Note that under nY the process stays negative until it hits zero and then stops at zero.

We will see later why we ignore excursions in 2.



2 Exit problems

Exit problem for Kyprianou—Loeffen’s refracted Lévy process:
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where
W (2, y) =Wy (z — y) (x < 0)

WI(Jq) (z,y) =W}(,q) (x —y) + a/ﬂ W)((q) (x — z)Wl(,q)’(z —y)dz (xz > 0)



Thm 4| Exit problem for our generalized refracted Lévy process:

EY [emrdrt < 77| = Wy @b) (b<0<a (3)
W (a,b) \b<z<a
where
WP (@, y) =Wi2 (z — y) (z < 0)
Wi (2,y) =H(® (@) + [ H{® @ yiu,0)x(@dudv) (2> 0)

H{? (z,y) =W @ () Wy? (—y) (¥’ (0) V 0)
HP (z, ys u,v) =W (@)W (—y)e®¥ O — Wi (u — )W (z — v)
IIx (dudv) =IIx (du — v)dv on (—oo,0) X (0, o).



Rem 5| Comparison of W (z, y) for = > 0

Kyprianou—Loeffen’s formula:

Wi (z,y) = WiP(z — y) + a/O W (z — 2)WiP' (2 — y)dz

Our formula:
W[(Jq) (CB, y) — Hiq) (iB, y) + / Héq) (ma Yy u, 'U)ﬁX (du'dv)
H{?Y (z,y) =W P () W? (—y) (¥’ (0) V 0)

H{P (2, y; u,v) =W D (@)W (—y)e®y O — WD (u — y)) WP (z — v)
IIx (dudv) =IIx (du — v)dv on (—oo,0) X (0, o).

Note that our formula involves the Lévy measure 11 x, while
Kyprianou—Loeffen made some special efforts so that their formula

does not involve the Lévy measure 11 x explicitly.
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Potential measures with absorbing barriers

"'c;,l_/\Tb
Ry f(2) = EV / e~ f(U,)dt (18)
0

Thm 6| Density representation:

(q)
B o Wz (x, b)
P09 (1 4y = ‘{) WiP@@—y) - W@ @—-y) (ye(0,a]) (19)
WUq (a, b)
(q)
(aibia W (x, b)
T (@, y) =——— W5 (a,9) — W (2, 9) (u € [b,0])  (20)
WUq (a, b)

Note that these formulae are of the same form as Kyprianou—Loeffen'’s.
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3 Approximation

For a general spectrally negative (non-monotone) Lévy process Z with Laplace exponent

2

o
Vo) =vsat Pt - [ (1-eWtaulcio®) May) @)

c0,0)
we define Z(™ as a compound Poisson with positive drift:

Uz (q) =0zmmq — / (1 — e‘”’) Iz (dy)  (22)
(—o0,0)

where

dzq =Yz +ozn + ( / )(—y)HZ(dy) (23)
—1,—1/n

Hz(n) :]—(—oo,—l/n)HZ + Uénzé(—l/n) (24)
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. . D . ..
It is obvious that Z(™) —— Z in law. Moreover, it is known that we

can find a coupling such that Z(® X% Z as.

Let X and Y be spectrally negative and assume that X has no
Gaussian component. Let U denote our generalized refracted Lévy

process. For each n, let X (™) and Y (™ be realized on a common

probability space such that they are independent. Let U™ be the
unique solution to the SDE:

(n) (n)
(n) _ (n) (n) _ JdX; (U,_" 2 0)
dUt = 1{U§f)20}dXt -+ 1{Ut(:,,)<0} { (6)

ay, (™ =
‘ ay, ™  w™ <o)

Thm 7| U™ -2 U in law.

(This is why we ignored excursions with negative germs.)
(We do not know whether we can find a u.c. a.s. coupling.)
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4 Sketch of the proofs

Recall the Gerber—Shiu formula:
EX |e™970 f(X XT _)] /f(u ’U)G(q)(az dudv)

G(q) (, dudv) _rgg’ )(w v) I x (dudv)

r & (z,v) =e " 2*@QyW D (z) - WP (z — y)

wX e £, X, )| = [ £ o) K (dudv)

K'? (dudv) =e~**x@D*IIx (dudv)

Thm 8| The Gerber—Shiu formula for the excursion measure:

(25)
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Recall the normalization: n™ [1 — e~ 9] = - . (8)
rx’ (0,0)
Lem 9| Denote X = sup X;.
>0
X | . —qrl. Vv 1
Then n [eqa;X>a}: o (30)
W' (a) ;
Consequently, letting ¢ = 0, we have n™ (X > a) = . (31)

(§)
Wi (a)

Rem 10 | For general one-dimensional diffusions, the relation between

(8) and (31) was obtained in 2015 by Chen—Fukushima and Y-Yano.

Rem 11| Pardo—Pérez—Rivero (2015, arXiv:1507.05225) study a close

relation between nX, the excursion measure of X itself, and the

excursion measure of the reflected process of X.
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Thm 12| Resolvents may be represented as follows:

(2)
R f(0) =—U 7 (& = 0)
N(q)]_
R{P f(z) =RD f(x) + e @=RP f(0) (z < 0)

R{ f(@) =RY” (@) + | RY F@GP (@,dudv)  (a > 0)

where
To
N[(]q)f :=nV [/ e_qtf(Xt)dt]
0

_/ —éx(q)yf(y)dy_|_/R(q)f(u)K(q)(dudfv)
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Thm 7| U™ -2 U in law.

It is known that for Feller processes convergence in law on D is
equivalent to strong convergence of the corresponding semigroups and

to that of the corresponding reslovents. Now Thm 7 reduces to

Thm 13 Rg’()n) — Rg’) strongly on C.

The proof is divided into the following steps:

1. pointwise convergence.

2. Rg]()n)f’s vanish uniformly outside some compact interval.

3. Rg()n)f’s are equicontinuous on any compact interval.



