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Theorem (D., Kyp ‘15)

Let f : R→ [0,∞) measurable and locally integrable (e.g. continuous)
and ξ a Lévy process with

(1) positive finite mean,

(2) existence of local times.

Then

P
(∫ ∞

0

f (ξs) ds <∞
)
∈ {0, 1}

and

P
(∫ ∞

0

f (ξs) ds <∞
)

= 1 ⇔
∫

f (x) dx <∞.

∫∞
0

f (ξs) ds is called a perpetual integral

perpetual integral needed for entrance boundary of jump diffusions

(1) implies ξ drifts to +∞ a.s.

(2) means
∫ t

0
f (ξs) ds =

∫
R f (x)Lt(x) dx a.s.

(1), (2) not necessary!
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Examples

Brownian motion with positive drift

ξt = σBt + b t, b > 0.

Perpetual integrals studied before by Salminen/Yor.

Spectrally negative Lévy processes studied by Schilling/Vondraček
and Khoshnevisan/Salminen/Yor.



Agenda

0-1 law, Hewitt-Savage

“⇐” potential theory

“⇒” Jeulin Lemma and fluctuation theory

Why?



0-1 law, Hewitt-Savage

Define increment processes

ξnt = ξn+t − ξn, t ∈ [0, 1],

so ξ0, ξ1, ... is iid. Write

Λ =

{∫ ∞
0

f (ξs) ds <∞
}

=

{ ∞∑
k=0

∫ k+1

k

f (ξs) ds <∞

}

=

{ ∞∑
k=0

∫ 1

0

f

(
ξks +

k−1∑
n=0

ξk1

)
ds <∞

}
∈ σ(ξ0, ξ1, ...).

Λ is exchangeable (i.e. does not depend on finite permutations), so
Hewitt-Savage implies P(Λ) ∈ {0, 1}.



“⇐”, potential theory

Show stronger statement E
[∫∞

0
f (ξs) ds

]
<∞.

E
[∫ ∞

0

f (ξs) ds

]
=

∫
R

f (x)U(dx),

where U is the potential measure U(dx) = E
[∫∞

0
1ξs∈dx ds

]
.

Potential theory for Lévy processes says, under assumption of the
theorem (local time and transience), U has bounded density. Hence,

E
[∫ ∞

0

f (ξs) ds

]
=

∫
R

f (x)U(dx) =

∫
R

f (x) u(x) dx ≤ C

∫
R

f (x) dx <∞

by assumption.

Note:
∫

f (x) U(dx) <∞ is the right condition!
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Potential theory for Lévy processes says, under assumption of the
theorem (local time and transience), U has bounded density. Hence,

E
[∫ ∞

0

f (ξs) ds

]
=

∫
R

f (x)U(dx) =

∫
R

f (x) u(x) dx ≤ C

∫
R

f (x) dx <∞

by assumption.

Note:
∫

f (x) U(dx) <∞ is the right condition!



“⇐”, potential theory

Show stronger statement E
[∫∞

0
f (ξs) ds

]
<∞.

E
[∫ ∞

0

f (ξs) ds

]
=

∫
R

f (x)U(dx),

where U is the potential measure U(dx) = E
[∫∞

0
1ξs∈dx ds

]
.
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“⇒”, Jeulin Lemma

Lemma (A version of Jeulin’s lemma)

Suppose (Xx)x∈R are

identically distributed on some probability space (Ω,A,P),

non-trivial and non-negative,

(some measurability).

Then

P

(∫
R

f (x) Xx dx <∞
)

⇒
∫
R

f (x) dx <∞.



Theorem (D., Kyp ‘15)

Let f : R→ [0,∞) measurable and locally integrable (e.g. continuous)
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