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Bernstein-gamma functions

¢ is a Bernstein function that is ¢ € B iff
o(z) =m+ oz + / (1 — e*Zy) w(dy),
0

where m,§ > 0; [;* (1 Ay)p(dy) < .
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Bernstein-gamma functions

¢ is a Bernstein function that is ¢ € B iff

o(z) =m+ oz + /000 (1 — e*Zy) w(dy),
where m,§ > 0; [;* (1 Ay)p(dy) < .
The unique solution to

Wy (z+1) = ¢(2)Wg (2z) on z € Cy o) = {z € C: Re(z) > 0} (0.1)

in the space of Mellin transforms of positive random variables we call a
Bernstein-gamma function.
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Bernstein-gamma functions

¢ is a Bernstein function that is ¢ € B iff
o(z) =m+ oz + / (1—e™) p(dy),
0
where m,§ > 0; [;* (1 Ay)p(dy) < .

The unique solution to
Wy (z+1) = ¢(2)Wg (2z) on z € Cy o) = {z € C: Re(z) > 0} (0.1)

in the space of Mellin transforms of positive random variables we call a
Bernstein-gamma function.

Recall that the Mellin transform of a positive random variable Y is formally
given by My(z) = E [Y*7!].
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Main goals - Bernstein-gamma functions

@ Understanding of W, as a meromorphic/holomorphic function

@ Development of Stirling type of asymptotic

1ma fun



Motivation - Bernstein-gamma functions

@ Wy appears crucially in the spectral studies of the generalized Laguerre
semigroups and the positive self-similar Markov processes as instances of
non-selfadjoint Markov semigroups. The quantification of its analytic

properties offers explicit information about eigen- and coeigen-functions,
their norms, etc.
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Motivation - Bernstein-gamma functions

@ Wy appears crucially in the spectral studies of the generalized Laguerre
semigroups and the positive self-similar Markov processes as instances of
non-selfadjoint Markov semigroups. The quantification of its analytic
properties offers explicit information about eigen- and coeigen-functions,
their norms, etc.

@ W, are related to the “phenomenon of self-similarity” the same way the
Gamma function appears in some diffusions

@ Amongst W, are some well-known special functions, e.g. the
Barnes-Gamma function, the g-gamma function

@ W, appears in exponential functionals of Lévy processes
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Lévy processes and exponential functionals of Lévy processes

Denote by

2 0o
N = {\U CV(z) = %zz + bz —I—/ (ezr —-1- Zr1|r|<1) MN(dr) — q}

— 00

the set of all Lévy-Khintchine exponents of possibly killed at exponential
random time of parameter q > 0 Lévy processes.
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Lévy processes and exponential functionals of Lévy processes

Denote by

2 0o
N = {\U CV(z) = %zz + bz —I—/ (ezr —-1- Zr1|r|<1) MN(dr) — q}

— 00

the set of all Lévy-Khintchine exponents of possibly killed at exponential
random time of parameter q > 0 Lévy processes.

The random variables

€q
Iy = / e Sds, eq ~ Exp(q); ep = 0o
0
are called exponential functionals of Lévy processes and

Iy < 00 <= \IIGN:{\UEN:q>Oor llmfszm}gﬁ.
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Main goals: Exponential functionals of Lévy processes

@ For any W € NV to solve and characterize the solutions of

f(z+1) = f(z) on {z € iR : W(—z) # 0} (0.2)

V(—z)

in terms of the global quantities of W
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Main goals: Exponential functionals of Lévy processes

@ For any W € NV to solve and characterize the solutions of

f(z+1) = f(z) on {z € iR : W(—z) # 0} (0.2)

-z
V(—z)
in terms of the global quantities of W

@ Use that My, (z+ 1) = E[I}] solves in some sense (0.2) to obtain
information about Iy
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Exponential functionals of Lévy processes

@ Appear in financial and insurance mathematics; branching with
immigration; fragmentation; self-similar growth fragmentation; etc.
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Exponential functionals of Lévy processes

@ Appear in financial and insurance mathematics; branching with
immigration; fragmentation; self-similar growth fragmentation; etc.

© We also use it in our work on the spectral theory of positive self-similar
semigroups
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Background and motivation- Exponential functionals of Lévy processes

@ Iy introduced and studied by Urbanik when £ is a subordinator
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Background and motivation- Exponential functionals of Lévy processes

@ Iy introduced and studied by Urbanik when £ is a subordinator
@ Further studied by Carmona, Petit and Yor who have in special cases
My, (Z + 1) = ﬁMIW(Z)

@ Maulik and Zwart derive this key recurrent equation in some generality
and utilize it
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Background and motivation- Exponential functionals of Lévy processes

@ Iy introduced and studied by Urbanik when £ is a subordinator

@ Further studied by Carmona, Petit and Yor who have in special cases
MIW (Z + 1) = ﬁMIW(Z)

@ Maulik and Zwart derive this key recurrent equation in some generality
and utilize it

@ Kuznetsov solves this recurrent relation for some classes of Lévy processes

@ There are various other contributions relying on different approaches
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Key quantities of ¢ € B in relation to Wy (z + 1) = ¢(2)Wy (2)

We use A, p) (resp. M, b)) to denote the holomorphic (resp. meromorphic)
functions on the complex strip C(, ) = {z € C: Re(z) € (a,b)}.
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Key quantities of ¢ € B in relation to Wy (z + 1) = ¢(2)Wy (2)

We use A, p) (resp. M, b)) to denote the holomorphic (resp. meromorphic)

functions on the complex strip C(, ) = {z € C: Re(z) € (a,b)}.
For any ¢ € B set

agp = &Ié% {(b S A(u’oo)} S [—OO, 0]
g = Sup {¢(u) = 0} € [-00,0]

dy = iti}g {#(u) =0 or ¢(u) = —oo} € [a4,0].

x
do=a¢
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Main representation of the solution to Wy (z + 1) = ¢(2)Wy (2)

Theorem

For any ¢ € B

Wo@) = oo T 29587 ca, L nn
7Z) = ——e . € #1900 8¢,00)7
T i) ekt e

is a solution to f(z + 1) = ¢(z)f(z), f(1) = 1.
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Main representation of the solution to Wy (z + 1) = ¢(z)Wy (z)

Theorem

For any ¢ € B

Wo@) = oo T 29587 ca, L nn
7Z) = ——e . € #1900 8¢,00)7
T i) ekt e

is a solution to f(z + 1) = ¢(z)f(z), f(1) = 1. Moreover, W, is zero-free on
Clag,00) and Wy(z+1) = E [Yé} for some positive random variable Y.
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Main representation of the solution to Wy (z + 1) = ¢(z)Wy (z)

Theorem

For any ¢ € B

Wo@) = oo T 29587 ca, L nn
7Z) = ——e . € #1900 8¢,00)7
T i) ekt e

is a solution to f(z + 1) = ¢(z)f(z), f(1) = 1. Moreover, W, is zero-free on
Clag,00) and Wy(z+1) = E [Yé} for some positive random variable Y.

When ¢(z) =z, dg =0, ag = —o0, We(z) = I(z).
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Stirling asymptotic for [W|

Theorem
Ifa,b >0, z=a+ib. Then

¢(1)

(Wo (2)] =

eCo(a)—A4(2) o —Eg(2)—Ry(a)

V(a)o(1 +a)o(2)] D —

%)

error term
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Stirling asymptotic for [Wg|

Theorem

If a,b >0, z=a-+ib. Then

(W (z)] = o(1) (Go()=A6(2) o ~Bs(2)~Ro(a)
Vo(a)o(1 + a)|o(2)] D —

error term

where

Ao (2) = / " arg (6 (a + 1)) du,

1+a
Gy (z) = Gy(a) = /1 In ¢(u)du

o

and ©, (a+ib) = tA, (a+ib) € [0, Z].
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Ay(z) = (% job arg ¢ (iu) du) )

c' T

1ma fun



#(1) eCo(a)=Au(2) g—Bg(2)—Ry(a)

Discussion Wy (z)| = N TOTES ]

Q Ifa— o
Gg(a) T alng(a) + Ing(a) — (a+1)0(1)
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Discussion Wy (z)| = meGé(a)*Aqﬁ(Z)e*%(Z)*R(p(a)

Q Ifa— o
Gg(a) T alng(a) + Ing(a) — (a+1)0(1)

@ For Bp = {¢ € B: § > 0} then the asymptotic along a + iR is

.y 00 7T m
Aga+ib) % Zp| - (a+ 3) In|b| + o([b|)
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Discussion Wy (z)| = meGé(a)*Aqﬁ(Z)e*%(Z)*R(p(a)

Q Ifa— o
Gg(a) T alng(a) + Ing(a) — (a+1)0(1)
@ For Bp = {¢ € B: § > 0} then the asymptotic along a + iR is
o0 T m
Aga+ib) % Zp| - (a+ 3) In|b| + o([b|)
Q@ For B, = {¢ €B: 6 =0;p(dy) ~y*dy, a(0, 1)}

Ag(a+ib) % Zalb| + of[b])
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The celebrated factorization Wiener-Hopf
V(—z) = —¢4+(z)p_(—2), at least for z € iR
with -
$+(z) = my + 012 +/0 (1—=e™) px(dy), z € C(o,00)5
are Bernstein functions then yields

—7 Z 1

fer) =3 = 5wy

f(2), (0.3)

on {z € iR : W(—z) # 0}.
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Strategy to solve f (z + 1) = %~ ——f(z)

The product of the solutions to the independent system

z
filz+1) = ——fi(z
1( ) ¢+(Z) 1( )
1
f 1 f;
2(Z + ) qf),(—Z) Q(Z)
on a common complex domain is a solution to f(z 4+ 1) = w(__zz)f(z) on this

domain.
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Strategy to solve f (z + 1) = %~ ——f(z)

The product of the solutions to the independent system

z
filz+1) = ——fi(z
1( ) ¢+(Z) 1( )
1
f 1 f;
2(Z + ) qf),(—Z) Q(Z)
on a common complex domain is a solution to f(z 4+ 1) = w(__zz)f(z) on this

domain.

These can be extracted from the general solution to f1(z + 1) = ¢4 (z){1(z)
that is W, .
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Solution to f (z + 1) = —g*5f(z) and representation of My, (z) = E 5]

Theorem

Let W € NV. Then

Mu(z) = er()z)m (1-7)cA (

M,
a¢+1{d¢+:0},1—d¢_) (a¢+7 a¢—)

solves f (z + 1) = ﬁf(z).
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Solution to f (z + 1) = —g*5f(z) and representation of My, (z) = E 5]

Theorem

Let W € NV. Then

Mu(z) = er()z)m (1-7)cA (

M,
a¢+1{d¢+:0},1—d¢_) (a¢+7 a¢—)

solves f (z + 1) = g%;f(2). Also if W € N then

M=)

M () = 0-(OMa () = 7 0

- (O)W,_ (1-12).
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Solution to f (z + 1) = —g*5f(z) and representation of My, (z) = E 5]

Theorem

Let W € NV. Then

Mu(z) = er()z)m (1-7)cA (

M,

a¢+1{d¢+:0},l—d¢_) (a¢+7 a¢—)

solves f (z + 1) = g%;f(2). Also if W € N then

_ I
W (2)

As a consequence of the Weierstrass product representations of Wy, , I

M, (2) = ¢ (0)Mu(2)

- (O)W,_ (1-12).

d d i
Iy =Ty x X4_ = (X) CuYa,
k=0

where E[f (Yy)] = w
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Decay of |[Muy(z)| = ‘w;(j)(z)

‘W(L (1- z)| along complex lines

Theorem

Let W € NV. Then exists Ny € (0, 00] such that for any a € (0,1 —dg_)

‘bl‘im [b|" My (a+1ib)| =0 < n € (0,Ny).
Exde el

Therefore if W € N, py € CEVI 7 (R*) if Ny > 1.
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Decay of |[Muy(z)| = ‘W;(j)(z)

‘W(L (1- z)| along complex lines

Theorem

Let W € NV. Then exists Ny € (0, 00] such that for any a € (0,1 —dg_)

‘bl‘im [b|" My (a+1ib)| =0 < n € (0,Ny).
Exde el

Therefore if W € N, py € CEVI 7 (R*) if Ny > 1.

_ m_(0) ¢+(0) + 7i+-(0)
R () FS () B

if and only if W corresponds to & = d,t + ZJNZtl Xj, 64 > 0.

€ (0,00)
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Decay of |[Muy(z)| = ‘W;(j)(z)

‘W(L (1- z)| along complex lines

Theorem

Let W € NV. Then exists Ny € (0, 00] such that for any a € (0,1 —dg_)

‘bl‘im [b|" My (a+1ib)| =0 < n € (0,Ny).
Exde el

Therefore if W € N, py € CEVI 7 (R*) if Ny > 1.

_ m_(0) ¢+(0) + 7i+-(0)
R () FS () B

if and only if W corresponds to & = d,t + ZJNZtl Xj, 64 > 0.

€ (0,00)

Ny is a measure for the polynomial decay of |My| along complex lines.

and P. Patie

Bernstein-gamma functions and exponential functionals




Ideas for the proof

Q For fixed a € (0, 1-— d¢_)

M@ = [ W (1-2)

V ¢+ (Z) r(Z)
Vo-(2)

o= Ao (1=2)+Aq, (2)

C

oo C|b|a—%e—% [b|—Ag_ (1—a—ib)+Ag4, (atib)
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Ideas for the proof

Q For fixed a € (0, 1-— d¢_)

M(z)
My(z = ‘W (1—2z
| \U( )‘ W¢+(Z) [ ( )
C V ¢+(Z) r(Z) e—A¢7(1—z)+A¢+(z)
Vo-(2)
% C|b a—%e—%\b\—AdL(1—a—ib)+A¢+(a+ib)

@ The hardest case is when 6, > 0, d_ = 0. Depending on T_(y) as y — 0
we use different techniques-reducing to I (0) = 0, using the alternative
representation ©,4 for Ay, etc.
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Large behaviour of Iy = [;@ e~**ds: the role of My, (z) = %QL (0)W4_ (1 —2)
+

Theorem
Let W € N that is Iy < oo. Then
. InP(ly >x) B B
Jim T dg_ = ilélg{éf’—(u) =0or ¢_(u) = —oo} € [~00,0],

(0.4)
where recall that W(z) = —¢,(—2z)¢_(2).
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Large behaviour of Iy = [;@ e~**ds: the role of My, (z) = %QL (0)Wy_ (1 —12)

Theorem
Let W € N that is Iy < oo. Then

. InP(ly >x) B B
Jim T dy_ = igw—(u) =0or ¢_(u) = —oo} € [~00,0],
(0.4)
where recall that W(z) = —¢,(—2z)¢_(2).
If 36y < 0: W (fy) =0 and |V (6)] < oo then
lim x % Hpt(x) = C > 0 (0.5)

X—> 00

provided Ny > n + 1 and a weak non-lattice condition when n > 1.
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Small behaviour of Iy: the role of My, (z) = V,&,IT(Z) - (0)W4_ (1 —12)

PO
: (2)
The small behaviour depends on the poles of @ on C(a¢+71).
o Tf §,.(0) = 0 then 5 € A(,,, ) and then
e

Wo ()
P(Iy <x)=o0(x"?), Va € (ap,,00) and P(Iy <x)=o0(1)ifag, =0
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Small behaviour of Iy: the role of My, (z) = Wr(z)(z)qﬁf([))W(L (1—12)
P4

The small behaviour depends on the poles of “L‘%Z) on (C(ad) 1):
by 4+

o If ¢, (0) = 0 then } ) € Ala,, o) and then

W
P(Iy <x)=o0(x"?), Va € (ap,,00) and P(Iy <x)=o0(1)ifag, =0
W

o If ¢, (0) > 0, then ‘Z{ y €M, ) and ¥(0) = —q with
.

]P(I\U < X) _ qz HL_:l w(k)XJ _ (b— (0) /a+loo XiZM\U(Z)dZ

jl 2mi oo

N=n-1 N=n+k
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Large time behaviour of Ty (t fo ~Ssds when W € N\ N

Let W € A and set Iw t) f &ds. Clearly with

Y, (z) = WV(z) — —¢%(—2)¢? (z) € N we have with real a that
1 _ l a—1| __ > —qt a—1
Mo, () = E 5] 7/0 e R [137(t)] dt

Laplace transform
() ¢0)
Wqﬂ(a) q

Wea (1-a)
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Large time behaviour of Iy(t) = fot e~ %ds when ¥V € N\ V

Theorem

Let W ¢ N with limsup,_, . & = limsup,_, ., —& = oo and
lim¢ oo P (6 < 0) = p € [0,1). Set W,(-) = V() —r = —¢" (—)¢"(-) € N and
k—(r) = ¢*(0). Then k_ € RV(p) at zero and for any a € (0,1), f € Cy, (RT)

B[O @)
t13(1)10 . (l) —/ f(x)¥a(dx).

t 0
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Large time behaviour of Iy(t) = fot e~ %ds when ¥V € N\ V

Theorem

Let W ¢ N with limsup,_, . & = limsup,_, ., —& = oo and
lim¢ oo P (6 < 0) = p € [0,1). Set W,(-) = V() —r = —¢" (—)¢"(-) € N and
k—(r) = ¢*(0). Then k_ € RV(p) at zero and for any a € (0,1), f € Cy, (RT)

B[O @)
t13(1)10 . (l) —/ f(x)¥a(dx).

t 0

IfE[&] =0,E [£7] < oo then r_(r) R Cr.
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Thank you!




