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Problem

Let {X"},cn be a sequence of Markov chains on Z¢ := n=179, and let
X be a Markov process on RY.
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Problem

Let {X"} e be a sequence of Markov chains on Z9 := n~ 79, and let
X be a Markov process on R9. The following two questions naturally
arise:

@ When does {X"},cn converge weakly to a Markov process?

@ Can X be approximated (in the sense of weak convergence) by a
sequence of Markov chains?
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Related results

@ Stroock-Varadhan, Multidimensional diffusion processes 1979: X
is a diffusion process determined by a generator in
non-divergence form.

@ Stroock-Zheng, AIHP 1997: X is a symmetric diffusion process
determined by a generator in divergence form.

@ Bass-Kumagai, TAMS 2008: X is a symmetric diffusion process
determined by a generator in divergence form.

@ Deuschel-Kumagai, CPAM 2013: X is a non-symmetric diffusion
process determined by a generator in divergence form.
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Related results

@ Husseini-Kassmann, PA 2007: X is a symmetric pure jump
process whose corresponding jump kernel is comparable to the
jump kernel of a symmetric stable Lévy process.

@ Bass-Kassmann-Kumagai, AIHP 2010: X is a symmetric pure
jump process with “stable-like” kernel.

@ Bass-Kumagai-Uemura, PTRF 2010: X is a symmetric process
which admits continuous and jump part.
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Related results

@ Husseini-Kassmann, PA 2007: X is a symmetric pure jump
process whose corresponding jump kernel is comparable to the
jump kernel of a symmetric stable Lévy process.

@ Bass-Kassmann-Kumagai, AIHP 2010: X is a symmetric pure
jump process with “stable-like” kernel.

@ Bass-Kumagai-Uemura, PTRF 2010: X is a symmetric process
which admits continuous and jump part.

The main step in the proofs of all above mentioned results is to obtain
a prior heat kernel estimates of the chains {X"} pen.
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Related results

By using completely different approach, Chen-Kim-Kumagai, PTRF
2013, consider the situation when X is a symmetric pure jump process
(on a metric measure space).
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Related results

By using completely different approach, Chen-Kim-Kumagai, PTRF
2013, consider the situation when X is a symmetric pure jump process
(on a metric measure space).

Their approach consists of two steps:

@ to conclude tightness of {X"},cn they use the Lyons-Zhang
decomposition, Lyons-Zhang, AP 1994;

@ to prove convergence of finite-dimensional distributions of {X"} e
to finite-dimensional distributions of X they apply the Mosco
convergence of symmetric Dirichlet forms, obtained by Mosco,
JFA 1994, and generalized by Kim, SPA 2006.
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Goal

Discuss the questions of convergence and approximation in the case
when X is a non-symmetric pure jump process.
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Goal

Discuss the questions of convergence and approximation in the case
when X is a hon-symmetric pure jump process.

The approach consists of two steps:

@ to conclude tightness of {X"} e we use stochastic analysis tools
(characteristics of semimartingales) discussed in Jacod-Shiryaev,
Limit theorems for stochastic processes, 2003;

@ to prove convergence of finite-dimensional distributions of {X"} e
to finite-dimensional distributions of X we apply the Mosco
convergence of non-symmetric Dirichlet forms, obtained by Hino,
JMKU 1998, and generalized by Télle, Master’s thesis 2006.
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Semimartingale approach

Let {St}>0 @ semimatingale and let h: RY — R be a truncation
function. Define,

B(h) =Y (ASs — h(ASs)) and  S(h); := S; — S(h)r.

s<t
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Semimartingale approach

Let {St}>0 @ semimatingale and let h: RY — R be a truncation
function. Define,

B(h) =Y (ASs — h(ASs)) and  S(h); := S; — S(h)r.

s<t

The process {S(h):}+>0 is @ special semimartingale, that is, it admits
a unique decomposition

S(h)t = So + M(h)t + B(h)t,

where {M(h):}+>0 is a local martingale and {B(h):}+>o is a predictable
process of bounded variation.
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Semimartingale approach

Further, let N(w, ds, dy) be the compensator of the jump measure

plw,ds,dy) == > b5 asw)(ds dy)
§:A85(w)#0

of {St}i>0, and let {A;}i>0 = {(A;j)1§j’j§d)}t20 be the quadratic
co-variation process for {Sf} 0.
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Further, let N(w, ds, dy) be the compensator of the jump measure

plw,ds,dy) == > b5 asw)(ds dy)
§:A85(w)#0

of {St}i>0, and let {A;}i>0 = {(A;j)1§j’j§d)}t20 be the quadratic

co-variation process for {Sf};~o. The triplet (B, A, N) is called the
characteristics of { St} (relative to h(x)).
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Semimartingale approach

Further, let N(w, ds, dy) be the compensator of the jump measure

plw,ds,dy) == > b5 asw)(ds dy)
§:A85(w)#0

of {St}i>0, and let {A;}i>0 = {(A;j)1§j’j§d)}t20 be the quadratic
co-variation process for {Sf};~o. The triplet (B, A, N) is called the
characteristics of { St} (relative to h(x)).

In addition, by defining Z\(h)’z = (M(h)}, M(h)’;), the triplet (B, A, N) is
called the modified characteristics of {S;}+~ (relative to h(x)).
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Semimartingale approach

Further, let N(w, ds, dy) be the compensator of the jump measure

plw,ds,dy) == > b5 asw)(ds dy)
§:A85(w)#0

of {St}i>0, and let {A;}i>0 = {(A;j)1§j’j§d)}t20 be the quadratic
co-variation process for {Sf};~o. The triplet (B, A, N) is called the
characteristics of { St} (relative to h(x)).

In addition, by defining Z\(h)’z = (M(h)}, M(h)’;), the triplet (B, A, N) is
called the modified characteristics of {S;}+~ (relative to h(x)).

Jacod-Shiryaev, Limit theorems for stochastic processes, 2003:
Problem of weak convergence of a sequence of semimartingales to a
semimartingale translate in terms of convergence of the corresponding
characteristics.
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Semimartingale approach

Let C": 29 x Z9 — [0,0), n € N, be a family of functions satisfying

(S1) C"(a,a)=0forallac Z¢ and all n € N;

(S2) sup > C"(a,b) <ocforallneN.

aczg bezd
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Semimartingale approach

Let C": 29 x Z9 — [0,0), n € N, be a family of functions satisfying

(S1) C"(a,a)=0forallac Z¢ and all n € N;

(S2) sup Y C"(a,b) <ooforallneN.

aGZgbeZg

Then, under (S1) and (S2), C", n € N, define a family of regular
continuous-time Markov chains { X/}~ on Z¢ determined by
infinitesimal generator of the form

A"f(a) = (f(b) - f(a))C"(a,b).

bezd
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Semimartingale approach

Clearly, the processes {X['}+~0, n € N, are semimartingales and the
corresponding (modified) characteristics are given by:

,_/ S h(b)C(X{, X0 + b)ds,
bezd
A," 0,
/ " hi(b)hy(b)C (XL, X0 + b)ds,
bezd

N"(ds, b) = C"(X7, X7 + b)ds.
S
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Semimartingale approach

Pure jump homogeneous diffusion with jumps is a semimartingale
{Xt}t>0 determined with (modified) characteristics of the form

t
B, — / b(Xs)ds,
0
AN =0, ij=1,....d,
. t
2= [ hhwxednds, ij=1.....d.
N(ds, dy) := v(Xs, dy)ds,

where b : RY — R% and v : RY x B(RY) — [0, oc] are, respectively,
Borel function and Borel kernel satisfying v(x,{0}) = 0 and

/ (1 A ly[P)w(x, dy) < oc.
Rd
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Semimartingale approach
Fora=(ai,...,aq) € 79 set

a:=[a—1/2n,a1+1/2n) x --- x [ag —1/2n,a4 + 1/2n),
and for x = (xy,...,xy) € RY define
[X]n = ([nx1 +1/2n] /n, ... [nxg+1/2n] /n).
Note that for a € Z9, [x], = afor all x € a.
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Semimartingale approach

Fora=(ai,...,aq) € 79 set
a:=[a—1/2n,a1+1/2n) x --- x [ag —1/2n,a4 + 1/2n),
and for x = (xy,...,xy) € RY define

[X]n = ([nx1 +1/2n] /n, ... [nxg+1/2n] /n).
Note that for a € Z9, [x], = afor all x € a.

Under (S1), (S2),

(S3) the functions b(x), x — [oq hi(y)hi(y)v(x, dy) and
X — [za 9(¥)v(x, dy) are continuous for any bounded and
continuous function g : R — R vanishing in a neighborhood of

the origin;
(S4) forall R >0,

lim sup v(x,BFf(0)) =0;
r/'% xeBg(0)

v
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Semimartingale approach

Theorem (continued)

(S5) forall R >0,

lim sup =0;
n,/'00 xe B (0)

> hi(b)C"([X]n, [X]n + b) — bi(X)

bezd

(S6) forall R > 0,

lim su hi(b)hi(b)C"([X]n, [X]n + b
MW@%?;< (IXln. [x1n + b)

- [ hnhvix.an| =0

Lévy 2016 July 25 - 29, 2016 14/43
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Semimartingale approach

Theorem (continued)

(S7) for all R > 0 and all bounded and continuous functions
g : RY — R vanishing in a neighbourhood of the origin,

lim sup | g(b)C"([x]n, [X]n+b)/Rdg(}’)V(Xad}’) =0,

n,/'o0 xc Br(0) bezd

i d
{Xi }120 n/‘—oo> {Xt} =0
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Semimartingale approach

Assume
sup v(x, B;(0)) < oo, p>0.
xERY

For0 < p < 1, define C™P : Z9 x 79 — [0, 00) by

,b—a), |la—b|> ¥
C"P(a, b) := v(a ’ nP
(@0 {o, a—bl < 3.

Observe that C"P, n € N, automatically satisfy (S1) and (S2).
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Semimartingale approach

Assume

sup v(x, B5(0)) < oo, p>0.
x€Rd

For0 < p < 1, define C™P : Z9 x 79 — [0, 00) by

V(aaB_a)7 |a_b|>§

C™P(a, b) =
(a.0) {o, la—b| < ¥d.

Observe that C"P, n € N, automatically satisfy (S1) and (S2).

The conditions in (S5)-(S7) will be satisfied if for all p > 0 and R > 0,

@ lime sup v(x,B,(0)\ Bx»(0)) =0,
N0 xeBg(0)

@ limeP sup v(x,B 0)\ B - 0)) = o0,
SN0 xes,f?o) (X, B /ger 4 (va/2)-(0) \ By/gor_(vdy2)-(0))
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Semimartingale approach

Theorem (continued)

@ lim sup ly|?v(x, dy) =0,
€50 xeBg(0) /B (0)

o lim sup / Y Rlo((Xn. dy) — v(x, dy)|7v = O,
(0) /B,(0)

n/OOXEBR

o lim sup / YIl(Xn dy) — v(x, dy)l7v = O,
n,/'%0 xeBp(0) By(0)\B, /g np_/d/2n(0)
o lm sup [[v([X]n BS(0)) — v(x, BSO0)) 7y =0, &0,

n,/0 xe B (0)

@ lim sup
€\0 xeBg(0)

/ hi(y)v(x, dy) — bi(x)| = 0.
Bc(0)
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Semimartingale approach

@ Pure jump Lévy processes.
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Semimartingale approach

@ Pure jump Lévy processes.

@ Stable-like processes: Let o : RY — (0, 2) be bounded and
continuously differentiable function with bounded derivatives such
that 0 < a = a(x) = @ < 2. Under this assumptions, Bass, PTRF
1988, Schilling, PTRF 1998, and Schilling-Wang, TAMS 2013,
have shown that there exists a unique Feller semimartingale
{Xi}t=>0, called a stable-like process, determined by (modified)
characteristics (with respect to an odd truncation function h(x)) of
the form

dy
/Jf
g // hily \y|d+aXS)ds

dyds
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Semimartingale approach

@ Lévy-driven SDEs: Let {L;}:~¢ be an n-dimensional Lévy process
and let & : R — R9*" be bounded and locally Lipschitz
continuous. Then, Schilling-Schnurr, EJP 2010, have shown that
the SDE

dX; = o(X;_)dL:, Xo=xeRY,

admits a unique strong solution which is a Feller semimartingale.
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Semimartingale approach

@ Lévy-driven SDEs: Let {L;}:~¢ be an n-dimensional Lévy process
and let & : R — R9*" be bounded and locally Lipschitz
continuous. Then, Schilling-Schnurr, EJP 2010, have shown that
the SDE

dX; = &(X;_)dL:, Xo=xeRY,

admits a unique strong solution which is a Feller semimartingale.

In particular, if
» L= (h,t), where {/i}+>0 is a d-dimensional Lévy process
determined by Lévy triplet (0,0, »(dy)) such that v(dy) is
symmetric;
» ®(x) = (¢(x)1,0), where ¢ : R —; R is locally Lipschitz
continuous and 0 < inf,cga [¢(X)| < SUP,cra [P(X)| < oo,

Nikola Sandri¢ (University of Zagreb) Lévy 2016 July 25 - 29, 2016 19/43



Semimartingale approach

then {X:}+o is determined by (modified) characteristics (with respect
to an odd truncation function h(x)) of the form

B(h): = 0,

. t
A= [ nnnw@oce) .
N(ds, dy) = v (/1606
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Dirichlet form approach
Recall, functions C" : Z4 x 79 — [0, 0), n € N, satisfying

(T1) C"(a,a) =0forallac Z9 and all n € N;

(T2) sup »_ C"(a,b) <ocforallneN,

aEaneZd

define a family of regular continuous-time Markov chains {X/"}~o with

(modified) characteristics:

,/ S h(b)C(XZ, X + b)ds,
bezd
A7 =0,
/ " hi(b)hy(b)C (XL, X0 + b)ds,
bezd
N"(ds, b) = C"(X2, X + b)ds.
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Dirichlet form approach

Theorem (tightness)

The family { X} will be tight if (T1), (T2) and
(T3) limsupsup Y C"(a,a+ b) < o0, p >0,

n/oo  aczd |b|>p

lim limsup sup > C"(a,a+ b) = 0;
r/7°00 n oo aezﬁ|b|>,

(T4) there exists p > 0 such that

limsup sup | Y~ b;C"(a,a+ b)| < o
n,/'co aGZg |bj<p

limsup sup | Y~ bibC"(a,a+ b)| < oo
n/'oo ang |bl<p

hold true.
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Dirichlet form approach

Let k : R x RY\ diag — [0, o0) be a Borel measurable function.
Denote

Ko, ) = 3(K(x,y) + k(. %)

Ka.) = k(% ¥) ~ k(y. %))
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Dirichlet form approach

Let k : R x RY\ diag — [0, o0) be a Borel measurable function.
Denote

Ko, ) = (K(%. ) + K(y. )
Ka(x,9) = 5(K(x.9) ~ K(y.).
Under assumption

(C1) X — / (1 A lyP)ks(x,x + y)dy € Lipo(RY, dx)
]Rd

2
Qg = Sup Mdy < 00,

x€Rd J {y€RE: ks(x,y)#0} ks(x,y)
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Dirichlet form approach

k(x, y) defines a regular symmetric Dirichlet form (£, F) on L?(RY, dx),
where

&h9)i= [ ()~ F0)@W) ~ gx)ks(x )iy, F.g € F.
RY xR\ diag
F = {fel®RY dx): E(f, ) < oo}

and F is the £, /2_closure of CLP(RY) in F.
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Dirichlet form approach

k(x, y) defines a regular symmetric Dirichlet form (£, F) on L?(RY, dx),
where

&h9)i= [ ()~ F0)@W) ~ gx)ks(x )iy, F.g € F.
RY xR\ diag
F = {fel®RY dx): E(f, ) < oo}

1/2

and F is the & /*-closure of C5P(RY) in F.

Further, Fukushima-Uemura, AP 2012, and Schilling-Wang, FMF
2015, have shown that the (non-symmetric) form

H(f,g) = — lim / / F(y)—F(x))k(x. y)dy g(x)dx, f.g € CEP(RY),
eNO0 Jrd Be(x)
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Dirichlet form approach

is well defined, has a representation

Ht.9) = ge(r.0) - |

R xR\ diag

(f(y) — f(x))a(y)Kka(x, y)dxdy,

extends to F x F such that (H, F) defines a regular lower bounded
coercive semi-Dirichlet form on L2(RY, dx) (and hence a Hunt process
({Xt} =0, {P*} ere) defined on the complement of an exceptional set).
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Dirichlet form approach

is well defined, has a representation

Hit.9) = 5e(r.9) - [

~ (f(y) = £(x))9(y ) Kka(x, y)dxdy,
R xR\ diag

extends to F x F such that (H, F) defines a regular lower bounded
coercive semi-Dirichlet form on L2(RY, dx) (and hence a Hunt process

({Xt} =0, {P*} ere) defined on the complement of an exceptional set).
Moreover, it satisfies

%(1 A a0)E1(f) < Hay(f) < 2+2*/§(1 Vao)&(f), feF,
and
(1/\ao)H1(f)§Hao(f)§(1\/Oéo)H1(f), feF.
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Dirichlet form approach

Denote by L2(Z2) the standard Hiloert space on ZZ with scalar product

(f,9)n:=n"%Y fla)g(a), f gel?Z]).

aczd
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Dirichlet form approach

Denote by L2(Z2) the standard Hiloert space on ZZ with scalar product

=n"?Y " fla)g(a), f.gecl?Z).

aczd

Assume (T1), (T2) and (C1). Then, for each n € N,

@ the following operator is well defined (non-symmetric) bilinear form
on F":= {f € L2(29) : E"(f, f) < o0},

HY(1.0) = 2£°(1.9) — n* 3" 3" (1(b)  1())a(b)C3(a. b

aczg bezd
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Dirichlet form approach

Proposition (continued)

@ (H", F") is a regular lower bounded coercive semi-Dirichlet form;
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Dirichlet form approach

Proposition (continued)

@ (H", F") is a regular lower bounded coercive semi-Dirichlet form;
@ forany f € C;(29) and g € F", it holds f € D4, A"f € L?(Z9) and

H'(f,g) = (- A"f,g)n;
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Dirichlet form approach

Proposition (continued)

@ (H", F") is a regular lower bounded coercive semi-Dirichlet form;
@ forany f € C;(29) and g € F", it holds f € D4, A"f € L?(Z9) and

H'(f,g) = (- A"f,g)n;

o forall f € F",

1 naErn < Hey(h < 20 v aynn
and

(1 A ag)HP(f) < H, (f) < (1 V ag) H7(f).
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Dirichlet form approach

Let rp : L2(RY, dx) — L?(Z9) and e, : L2(Z9) — L?(RY dx), n € N,
denote the restriction and extension operators, respectively, defined as
follows

rf( —n/f ax, anﬂ
=f(a), xe

enf(x)
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Dirichlet form approach

Let rp : L2(RY, dx) — L?(Z9) and e, : L2(Z9) — L?(RY dx), n € N,
denote the restriction and extension operators, respectively, defined as
follows

mf(a) =n /f dx, aczd
enf(x) =f(a), xe
We say that f, € L2(Z9), n € N, converge strongly to f € L?(RY, dx) if
nll/‘moo ||enfn - f||L2 — 0,
and they converge weakly if

Iifm (enfn,g) = (f,9), g€ L2(RY, dx).
n oo
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Dirichlet form approach

Theorem

Assume (T1)-(T4), (C1) and that {P{'r,f},>1 converges strongly to P;f
forall t > 0 and all f € L2(RY, dx). Then, there exists a Lebesgue
measure zero set, say B, such that for any initial distribution p(dx) of
{Xi}t=0 with (B) = 0 and any sequence of initial distributions of
{X["}t=0, n € N, converging weakly to p(dx),

m d
{X{"} >0 —>n/oo {Xt}t=o0-
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Dirichlet form approach

Let C be dense in (F, H11/2). Assume the following
(i) for every sequence {fy},>1, fn € F", converging weakly to some
f € L2(RY, dx) and satisfying Iirginf H(f,) < oo, we have that
n ‘oo
feF;

(ii) forany g € C, any f € F and any sequence {f},>1, f € F",
converging weakly to f, there exists a sequence g, € F"
converging strongly to g and

lim H"(gn, fa) = H(g,f).
n ‘oo

Then, we say that the forms H", n € N, converge in generalized
(Mosco) sense to H.
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Dirichlet form approach

If
(C2) x — 0.0 ly[2ks(x, x + y) dy € [2 (RY, dx),
1
X — ks(x,x + y)dy € L2(RY, dx) U L>°(RY, dx),
B5(0)

X*—>/B(O) YI(lk(x,x +y) — k(x,x = y)|
;
—|—|k(X—|—y,X) _k(X_y7X)’)dy € L2 (Rd,dX),

loc

then (under (C1)) for the generator (A, D 4) of {Pt}+>0 (or, equivalently,
of (H, F)) it holds that
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Dirichlet form approach

® C(RY) C Da;
e for every g € C°(RY),
Ag() = | (9 +) = 90) = (V). )15, 0 (Y K(x. X+ y) o

n % / (Va(x), y)(k(x. x + y) — k(x,x — y)) dy:
B;(0)

e forallge CP(RY and all f € F,

H(g7 f) = <_Ag> f>
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Dirichlet form approach

Assume (T1), (T2), (C1), (C2),

(C3) 0 < liminfag < limsup o < oo;
n ‘oo n /oo

(C4) for every p > 0,

sup | (1 Aly[P)ks(x, x + y)dy < oo;
x€B,(0) JR?
(C5) for every p > 0,

limsup sup Y (1A[bf°)Ci(a,a+ b) < oo
n,/'oco  aeB,(0) bezd
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Dirichlet form approach

Theorem (continued)

(C6) for every e > 0 there is ny € N such that for all np < m < nand all
fel?(Z9),

E(tmemf, rmemf)* < EM(£,1)1/2 4+ ¢;

(C7) for any sufficiently small ¢ > 0 and large m € N,

Iifm EN _(F.f) = Eme(f,F), fe CLP(RY),
n oo ?

where
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Dirichlet form approach

Theorem (continued)

(C7)

1
Eme(f )= / (F(y)—1(x))2ks(x, y)dxdy.
2 J{(x,y)€Bm(0)x Bm(0): [x—y|>e}

_ nd _
Eme(f, 1) = 2/ (f(y)—f(x))?C{(x, y)axdy
{(%,y)€Bm(0)x Bm(0): |x—y|>e}

and

An [ Cla,b), xca and ycb
CS(X7.y) —{ 0’ X¢é or y¢5l

v
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Dirichlet form approach

Theorem (continued)
R%,d
(C8) /B 0 lylk(x, x + y) — n9C"([X]n, [X]n + [y]n)|dy % 0:
1(0 -

d An L,ZOC(]Rd,dx)
(©9) [ kxx )~ 1C (o el + ey <=7 0
1

(C10) for all R > 0 large enough,

2
/ (/ k(x,x+y)dy> dx < oo;
BZg(0) \ Y/ Br(—x)
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Dirichlet form approach

Theorem (continued)

(C11) for all R > 0 large enough,

2
/ ( / k(X + ¥) — n9C([X] [X]n + [y1n)|dy> ol
Bg4(0) \J/Ba(—x)

n, ‘oo 0:

(C12) /3(0) YIlk(x, x + y) = k(x, x = y) = n%C"([x]n, [X]n + [¥1n)

12 (RY.d
+nC (X [X]n — V) dy =52, o

n ‘oo

The the forms H", n € N, converge to H in Mosco sense.
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Dirichlet form approach

For 0 < p < 1 define

nd//k dxdy, |a—b|> 2%
Cn,p(a, b) = 2 JB (Xay) xay, | | nP
0, la—b| < 2.
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Dirichlet form approach

For 0 < p < 1 define

k(x,y)dxdy, |a—b|> 243
C"P(a.b) = { * | fyxviay. ja-bi> %
la—b| < 2#.
The conditions in (T2)-(T4) will be satisfied if
@ forevery p > 0,
sup k(x,y)dy < oo;

xeRY J BS(x)

@ lim sup k(x,y)dy =0;
r 'oo xeRd J BE(x)
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Dirichlet form approach

@ there exists p > 0 such that

lim sup sup
eN0 xecRd

/ (vi — xi)k(x,y)dy| < oo
B, (x)\B=(x)

lim sup sup lyi — xilk(x,y)dx < oo
N0 xeRIYB /5.0\B /g.0(x)— (va 2)-(X)

lim sup e sup k(x,y)dy < oo,
eNO0  xeRd JB,(x)\B.p(x)
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Dirichlet form approach

@ there exists p > 0 such that

lim sup sup
eNO0 xcRd

/ i — x)(¥; — )k(x.y)dy| < oo
By (x)\B:(x)

lim sup sup i = Xilly; — xjlk(x, y)dx < oo
N0 xeRIYB 5.0 ()\B g.0_(vd 2)-(X)

limsupe sup lvi — xilk(x,y)dy < co
eNO0  xeRI /B, (X)\B.p(X)
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Dirichlet form approach

@ Symmetric processes.
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Dirichlet form approach

@ Symmetric processes.

@ Non-symmetric Lévy processes: Let B C RY be Borel and let
v1(dy) = ny(y)dy and v»(dy) = nx(y)dy be Lévy measures.
Define

_J mdy), yeB
v(dy) := { z/;(dy), y € B°.
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Dirichlet form approach

@ Symmetric processes.

@ Non-symmetric Lévy processes: Let B C RY be Borel and let
v1(dy) = ny(y)dy and v»(dy) = nx(y)dy be Lévy measures.
Define

_ | n(dy), yeB
) = { ve(dy), y € BC.
@ Stable-like processes: Let o : R — (0,2) be Borel measurable
suchthat0 < a < a(x) <a < 2and

1
(Bllogufy, _
/0 u1+a

where 3(U) := supj,_y<, la(x) — a(y)].
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Dirichlet form approach

@ Then, the (non-symmetric) kernel

K(x,y) == y(x)ly — x| *~7
defines a regular lower bounded semi-Dirichlet form whose
corresponding Hunt process is called stable-like process. Here

-1 _(a(x)/2+d/2)

1(x) == a(x)2 T9/2I(1 — a(x)/2)’
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Thank you for your attention!

Nikola Sandri¢ (University of Zagreb) Lévy 2016
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