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Nikola Sandrić (University of Zagreb) Lévy 2016 July 25 - 29, 2016 1 / 43



Outline

1 Problem

2 Related results

3 Semimartingale approach

4 Dirichlet form approach
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Problem

Let {Xn}n∈N be a sequence of Markov chains on Zd
n := n−1Zd , and let

X be a Markov process on Rd .

The following two questions naturally
arise:

When does {Xn}n∈N converge weakly to a Markov process?

Can X be approximated (in the sense of weak convergence) by a
sequence of Markov chains?
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Related results

Stroock-Varadhan, Multidimensional diffusion processes 1979: X
is a diffusion process determined by a generator in
non-divergence form.

Stroock-Zheng, AIHP 1997: X is a symmetric diffusion process
determined by a generator in divergence form.

Bass-Kumagai, TAMS 2008: X is a symmetric diffusion process
determined by a generator in divergence form.

Deuschel-Kumagai, CPAM 2013: X is a non-symmetric diffusion
process determined by a generator in divergence form.
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Related results

Husseini-Kassmann, PA 2007: X is a symmetric pure jump
process whose corresponding jump kernel is comparable to the
jump kernel of a symmetric stable Lévy process.

Bass-Kassmann-Kumagai, AIHP 2010: X is a symmetric pure
jump process with “stable-like” kernel.

Bass-Kumagai-Uemura, PTRF 2010: X is a symmetric process
which admits continuous and jump part.

The main step in the proofs of all above mentioned results is to obtain
a prior heat kernel estimates of the chains {Xn}n∈N.
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Related results

By using completely different approach, Chen-Kim-Kumagai, PTRF
2013, consider the situation when X is a symmetric pure jump process
(on a metric measure space).

Their approach consists of two steps:

to conclude tightness of {Xn}n∈N they use the Lyons-Zhang
decomposition, Lyons-Zhang, AP 1994;

to prove convergence of finite-dimensional distributions of {Xn}n∈N
to finite-dimensional distributions of X they apply the Mosco
convergence of symmetric Dirichlet forms, obtained by Mosco,
JFA 1994, and generalized by Kim, SPA 2006.
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Goal

Discuss the questions of convergence and approximation in the case
when X is a non-symmetric pure jump process.

The approach consists of two steps:

to conclude tightness of {Xn}n∈N we use stochastic analysis tools
(characteristics of semimartingales) discussed in Jacod-Shiryaev,
Limit theorems for stochastic processes, 2003;

to prove convergence of finite-dimensional distributions of {Xn}n∈N
to finite-dimensional distributions of X we apply the Mosco
convergence of non-symmetric Dirichlet forms, obtained by Hino,
JMKU 1998, and generalized by Tölle, Master’s thesis 2006.
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Semimartingale approach

Let {St}t≥0 a semimatingale and let h : Rd −→ Rd be a truncation
function. Define,

S̄(h)t :=
∑
s≤t

(∆Ss − h(∆Ss)) and S(h)t := St − S̄(h)t .

The process {S(h)t}t≥0 is a special semimartingale, that is, it admits
a unique decomposition

S(h)t = S0 + M(h)t + B(h)t ,

where {M(h)t}t≥0 is a local martingale and {B(h)t}t≥0 is a predictable
process of bounded variation.
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Semimartingale approach

Further, let N(ω,ds,dy) be the compensator of the jump measure

µ(ω,ds,dy) :=
∑

s:∆Ss(ω)6=0

δ(s,∆Ss(ω))(ds,dy)

of {St}t≥0, and let {At}t≥0 = {(Aij
t )1≤i,j≤d )}t≥0 be the quadratic

co-variation process for {Sc
t }t≥0.

The triplet (B,A,N) is called the
characteristics of {St}t≥0 (relative to h(x)).

In addition, by defining Ã(h)ij
t := 〈M(h)i

t ,M(h)j
t〉, the triplet (B, Ã,N) is

called the modified characteristics of {St}t≥0 (relative to h(x)).

Jacod-Shiryaev, Limit theorems for stochastic processes, 2003:
Problem of weak convergence of a sequence of semimartingales to a
semimartingale translate in terms of convergence of the corresponding
characteristics.
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Semimartingale approach

Let Cn : Zd
n × Zd

n −→ [0,∞), n ∈ N, be a family of functions satisfying

(S1) Cn(a,a) = 0 for all a ∈ Zd
n and all n ∈ N;

(S2) sup
a∈Zd

n

∑
b∈Zd

n

Cn(a,b) <∞ for all n ∈ N.

Then, under (S1) and (S2), Cn, n ∈ N, define a family of regular
continuous-time Markov chains {X n

t }t≥0 on Zd
n determined by

infinitesimal generator of the form

Anf (a) =
∑
b∈Zd

n

(f (b)− f (a))Cn(a,b).
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Semimartingale approach

Clearly, the processes {X n
t }t≥0, n ∈ N, are semimartingales and the

corresponding (modified) characteristics are given by:

Bn(h)t =

∫ t

0

∑
b∈Zd

n

h(b)Cn(X n
s ,X

n
s + b)ds,

An
t = 0,

Ãn(h)ij
t =

∫ t

0

∑
b∈Zd

n

hi(b)hj(b)Cn(X n
s ,X

n
s + b)ds,

Nn(ds,b) = Cn(X n
s ,X

n
s + b)ds.
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Semimartingale approach

Pure jump homogeneous diffusion with jumps is a semimartingale
{Xt}t≥0 determined with (modified) characteristics of the form

Bt :=

∫ t

0
b(Xs)ds,

An,ij
t := 0, i , j = 1, . . . ,d ,

Ãn,ij
t :=

∫ t

0

∫
Rd

hi(y)hj(y)ν(Xs,dy)ds, i , j = 1, . . . ,d ,

N(ds,dy) := ν(Xs,dy)ds,

where b : Rd −→ Rd and ν : Rd × B(Rd ) −→ [0,∞] are, respectively,
Borel function and Borel kernel satisfying ν(x , {0}) = 0 and∫

Rd
(1 ∧ |y |2)ν(x ,dy) <∞.
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Semimartingale approach
For a = (a1, . . . ,ad ) ∈ Zd

n set

ā := [a1 − 1/2n,a1 + 1/2n)× · · · × [ad − 1/2n,ad + 1/2n),

and for x = (x1, . . . , xd ) ∈ Rd define

[x ]n := ([nx1 + 1/2n] /n, . . . , [nxd + 1/2n] /n) .

Note that for a ∈ Zd
n , [x ]n = a for all x ∈ ā.

Theorem
Under (S1), (S2),

(S3) the functions b(x), x 7−→
∫
Rd hi(y)hj(y)ν(x ,dy) and

x 7−→
∫
Rd g(y)ν(x ,dy) are continuous for any bounded and

continuous function g : Rd −→ R vanishing in a neighborhood of
the origin;

(S4) for all R > 0,
lim

r↗∞
sup

x∈BR(0)

ν(x ,Bc
r (0)) = 0;
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Semimartingale approach

Theorem (continued)
(S5) for all R > 0,

lim
n↗∞

sup
x∈BR(0)

∣∣∣∣∣∣
∑
b∈Zd

n

hi(b)Cn([x ]n, [x ]n + b)− bi(x)

∣∣∣∣∣∣ = 0;

(S6) for all R > 0,

lim
n↗∞

sup
x∈BR(0)

∣∣∣ ∑
b∈Zd

n

hi(b)hj(b)Cn([x ]n, [x ]n + b)

−
∫
Rd

hi(y)hj(y)ν(x ,dy)
∣∣∣ = 0;
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Semimartingale approach

Theorem (continued)
(S7) for all R > 0 and all bounded and continuous functions

g : Rd −→ R vanishing in a neighbourhood of the origin,

lim
n↗∞

sup
x∈BR(0)

∣∣∣∣∣∣
∑
b∈Zd

n

g(b)Cn([x ]n, [x ]n + b)−
∫
Rd

g(y)ν(x ,dy)

∣∣∣∣∣∣ = 0,

{X n
t }t≥0

d−−−→
n↗∞

{Xt}t≥0.
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Semimartingale approach

Assume
sup
x∈Rd

ν(x ,Bc
ρ(0)) <∞, ρ > 0.

For 0 < p ≤ 1, define Cn,p : Zd
n × Zd

n −→ [0,∞) by

Cn,p(a,b) :=

{
ν(a, b̄ − a), |a− b| >

√
d

np

0, |a− b| ≤
√

d
np .

Observe that Cn,p, n ∈ N, automatically satisfy (S1) and (S2).

Theorem
The conditions in (S5)-(S7) will be satisfied if for all ρ > 0 and R > 0,

lim
ε↘0

ε sup
x∈BR(0)

ν(x ,Bρ(0) \ Bεp (0)) = 0,

lim
ε↘0

εp sup
x∈BR(0)

ν(x ,B√dεp+(
√

d/2)ε(0) \ B√dεp−(
√

d/2)ε(0)) = 0,
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Semimartingale approach

Theorem (continued)

lim
ε↘0

sup
x∈BR(0)

∫
Bε(0)

|y |2ν(x ,dy) = 0,

lim
n↗∞

sup
x∈BR(0)

∫
Bρ(0)

|y |2‖ν([x ]n,dy)− ν(x ,dy)‖TV = 0,

lim
n↗∞

sup
x∈BR(0)

∫
Bρ(0)\B√d/np−

√
d/2n(0)

|y |‖ν([x ]n,dy)− ν(x ,dy)‖TV = 0,

lim
n↗∞

sup
x∈BR(0)

‖ν([x ]n,Bc
ε (0))− ν(x ,Bc

ε (0))‖TV = 0, ε > 0,

lim
ε↘0

sup
x∈BR(0)

∣∣∣∣∣
∫

Bc
ε(0)

hi(y)ν(x ,dy)− bi(x)

∣∣∣∣∣ = 0.
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Semimartingale approach

Examples
Pure jump Lévy processes.

Stable-like processes: Let α : Rd −→ (0,2) be bounded and
continuously differentiable function with bounded derivatives such
that 0 < α = α(x) = α < 2. Under this assumptions, Bass, PTRF
1988, Schilling, PTRF 1998, and Schilling-Wang, TAMS 2013,
have shown that there exists a unique Feller semimartingale
{Xt}t≥0, called a stable-like process, determined by (modified)
characteristics (with respect to an odd truncation function h(x)) of
the form

B(h)t = 0,

Ãi,j
t =

∫ t

0

∫
Rd

hi(y)hj(y)
dy

|y |d+α(Xs)
ds,

N(ds,dy) =
dyds

|y |d+α(Xs)
.
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Semimartingale approach

Examples
Lévy-driven SDEs: Let {Lt}t≥0 be an n-dimensional Lévy process
and let Φ : Rd −→ Rd×n be bounded and locally Lipschitz
continuous. Then, Schilling-Schnurr, EJP 2010, have shown that
the SDE

dXt = Φ(Xt−)dLt , X0 = x ∈ Rd ,

admits a unique strong solution which is a Feller semimartingale.

In particular, if
I Lt = (lt , t), where {lt}t≥0 is a d-dimensional Lévy process

determined by Lévy triplet (0,0, ν(dy)) such that ν(dy) is
symmetric;

I Φ(x) = (φ(x)I,0), where φ : Rd −→ R is locally Lipschitz
continuous and 0 < infx∈Rd |φ(x)| ≤ supx∈Rd |φ(x)| <∞,
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Semimartingale approach

Examples
then {Xt}t≥0 is determined by (modified) characteristics (with respect
to an odd truncation function h(x)) of the form

B(h)t = 0,

Ãi,j
t =

∫ t

0

∫
Rd

hi(y)hj(y)ν (dy/|φ(Xs)|) ds,

N(ds,dy) = ν (dy/|φ(Xs)|) .
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Dirichlet form approach
Recall, functions Cn : Zd

n × Zd
n −→ [0,∞), n ∈ N, satisfying

(T1) Cn(a,a) = 0 for all a ∈ Zd
n and all n ∈ N;

(T2) sup
a∈Zd

n

∑
b∈Zd

n

Cn(a,b) <∞ for all n ∈ N,

define a family of regular continuous-time Markov chains {X n
t }t≥0 with

(modified) characteristics:

Bn(h)t =

∫ t

0

∑
b∈Zd

n

h(b)Cn(X n
s ,X

n
s + b)ds,

An
t = 0,

Ãn(h)ij
t =

∫ t

0

∑
b∈Zd

n

hi(b)hj(b)Cn(X n
s ,X

n
s + b)ds,

Nn(ds,b) = Cn(X n
s ,X

n
s + b)ds.
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Dirichlet form approach

Theorem (tightness)
The family {X n

t }t≥0 will be tight if (T1), (T2) and

(T3) lim sup
n↗∞

sup
a∈Zd

n

∑
|b|>ρ

Cn(a,a + b) <∞, ρ > 0,

lim
r↗∞

lim sup
n↗∞

sup
a∈Zd

n

∑
|b|>r

Cn(a,a + b) = 0;

(T4) there exists ρ > 0 such that

lim sup
n↗∞

sup
a∈Zd

n

∣∣∣∣∣∣
∑
|b|<ρ

biCn(a,a + b)

∣∣∣∣∣∣ <∞

lim sup
n↗∞

sup
a∈Zd

n

∣∣∣∣∣∣
∑
|b|<ρ

bibjCn(a,a + b)

∣∣∣∣∣∣ <∞
hold true.
Nikola Sandrić (University of Zagreb) Lévy 2016 July 25 - 29, 2016 22 / 43



Dirichlet form approach

Let k : Rd × Rd \ diag −→ [0,∞) be a Borel measurable function.
Denote

ks(x , y) :=
1
2

(k(x , y) + k(y , x))

ka(x , y) :=
1
2

(k(x , y)− k(y , x)).

Under assumption

(C1) x 7−→
∫
Rd

(1 ∧ |y |2)ks(x , x + y)dy ∈ L1
loc(Rd ,dx)

α0 := sup
x∈Rd

∫
{y∈Rd : ks(x ,y)6=0}

ka(x , y)2

ks(x , y)
dy <∞,
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Dirichlet form approach

k(x , y) defines a regular symmetric Dirichlet form (E ,F) on L2(Rd ,dx),
where

E(f ,g) :=

∫
Rd×Rd\diag

(f (y)− f (x))(g(y)− g(x))ks(x , y)dxdy , f ,g ∈ F̄ ,

F̄ := {f ∈ L2(Rd ,dx) : E(f , f ) <∞}

and F is the E1/2
1 -closure of CLip

c (Rd ) in F̄ .

Further, Fukushima-Uemura, AP 2012, and Schilling-Wang, FMF
2015, have shown that the (non-symmetric) form

H(f ,g) := − lim
ε↘0

∫
Rd

∫
Bc
ε(x)

(f (y)−f (x))k(x , y)dy g(x)dx , f ,g ∈ CLip
c (Rd ),
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Nikola Sandrić (University of Zagreb) Lévy 2016 July 25 - 29, 2016 24 / 43



Dirichlet form approach

is well defined, has a representation

H(f ,g) =
1
2
E(f ,g)−

∫
Rd×Rd\diag

(f (y)− f (x))g(y)ka(x , y)dxdy ,

extends to F × F such that (H,F) defines a regular lower bounded
coercive semi-Dirichlet form on L2(Rd ,dx) (and hence a Hunt process
({Xt}t≥0, {Px}x∈Rd ) defined on the complement of an exceptional set).

Moreover, it satisfies

1
4

(1 ∧ α0)E1(f ) ≤ Hα0(f ) ≤ 2 +
√

2
2

(1 ∨ α0) E1(f ), f ∈ F ,

and
(1 ∧ α0)H1(f ) ≤ Hα0(f ) ≤ (1 ∨ α0) H1(f ), f ∈ F .
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Dirichlet form approach

Denote by L2(Zd
n ) the standard Hilbert space on Zd

n with scalar product

〈f ,g〉n := n−d
∑
a∈Zd

n

f (a)g(a), f ,g ∈ L2(Zd
n ).

Proposition
Assume (T1), (T2) and (C1). Then, for each n ∈ N,

the following operator is well defined (non-symmetric) bilinear form
on Fn := {f ∈ L2(Zd

n ) : En(f , f ) <∞},

Hn(f ,g) =
1
2
En(f ,g)− n−d

∑
a∈Zd

n

∑
b∈Zd

n

(f (b)− f (a))g(b)Cn
a (a,b);
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Dirichlet form approach

Proposition (continued)
(Hn,Fn) is a regular lower bounded coercive semi-Dirichlet form;

for any f ∈ Cc(Zd
n ) and g ∈ Fn, it holds f ∈ DAn , Anf ∈ L2(Zd

n ) and

Hn(f ,g) = 〈−Anf ,g〉n;

for all f ∈ Fn,

1
4

(1 ∧ αn
0)En

1 (f ) ≤ Hn
α0

(f ) ≤ 2 +
√

2
2

(1 ∨ αn
0) En

1 (f )

and
(1 ∧ αn

0)Hn
1 (f ) ≤ Hn

α0
(f ) ≤ (1 ∨ αn

0) Hn
1 (f ).
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Dirichlet form approach
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Nikola Sandrić (University of Zagreb) Lévy 2016 July 25 - 29, 2016 27 / 43



Dirichlet form approach
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Dirichlet form approach

Let rn : L2(Rd ,dx) −→ L2(Zd
n ) and en : L2(Zd

n ) −→ L2(Rd ,dx), n ∈ N,
denote the restriction and extension operators, respectively, defined as
follows

rnf (a) = nd
∫

ā
f (x)dx , a ∈ Zd

n

enf (x) = f (a), x ∈ ā.

We say that fn ∈ L2(Zd
n ), n ∈ N, converge strongly to f ∈ L2(Rd ,dx) if

lim
n↗∞

‖enfn − f‖L2 = 0,

and they converge weakly if

lim
n↗∞
〈enfn,g〉 = 〈f ,g〉, g ∈ L2(Rd ,dx).
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Nikola Sandrić (University of Zagreb) Lévy 2016 July 25 - 29, 2016 28 / 43



Dirichlet form approach

Theorem
Assume (T1)-(T4), (C1) and that {Pn

t rnf}n≥1 converges strongly to Pt f
for all t ≥ 0 and all f ∈ L2(Rd ,dx). Then, there exists a Lebesgue
measure zero set, say B, such that for any initial distribution µ(dx) of
{Xt}t≥0 with µ(B) = 0 and any sequence of initial distributions of
{X n

t }t≥0, n ∈ N, converging weakly to µ(dx),

{X n
t }t≥0

d−−−→
n↗∞

{Xt}t≥0.
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Dirichlet form approach

Definition

Let C be dense in (F ,H1/2
1 ). Assume the following

(i) for every sequence {fn}n≥1, fn ∈ Fn, converging weakly to some
f ∈ L2(Rd ,dx) and satisfying lim inf

n↗∞
Hn

1 (fn) <∞, we have that

f ∈ F ;
(ii) for any g ∈ C, any f ∈ F and any sequence {fn}n≥1, fn ∈ Fn,

converging weakly to f , there exists a sequence gn ∈ Fn

converging strongly to g and

lim
n↗∞

Hn(gn, fn) = H(g, f ).

Then, we say that the forms Hn, n ∈ N, converge in generalized
(Mosco) sense to H.
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Dirichlet form approach

If

(C2) x 7−→
∫

B1(0)
|y |2ks(x , x + y) dy ∈ L2

loc(Rd ,dx),

x 7−→
∫

Bc
1(0)

ks(x , x + y) dy ∈ L2(Rd ,dx) ∪ L∞(Rd ,dx),

x 7−→
∫

B1(0)
|y |(|k(x , x + y)− k(x , x − y)|

+|k(x + y , x)− k(x − y , x)|) dy ∈ L2
loc(Rd ,dx),

then (under (C1)) for the generator (A,DA) of {Pt}t≥0 (or, equivalently,
of (H,F)) it holds that
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Dirichlet form approach

C∞c (Rd ) ⊆ DA;

for every g ∈ C∞c (Rd ),

Ag(x) =

∫
Rd

(g(x + y)− g(x)− 〈∇g(x), y〉1B1(0)(y))k(x , x + y) dy

+
1
2

∫
B1(0)
〈∇g(x), y〉(k(x , x + y)− k(x , x − y)) dy ;

for all g ∈ C∞c (Rd ) and all f ∈ F ,

H(g, f ) = 〈−Ag, f 〉.
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Dirichlet form approach

Theorem
Assume (T1), (T2), (C1), (C2),

(C3) 0 < lim inf
n↗∞

αn
0 ≤ lim sup

n↗∞
αn

0 <∞;

(C4) for every ρ > 0,

sup
x∈Bρ(0)

∫
Rd

(1 ∧ |y |2)ks(x , x + y)dy <∞;

(C5) for every ρ > 0,

lim sup
n↗∞

sup
a∈Bρ(0)

∑
b∈Zd

n

(1 ∧ |b|2)Cn
s (a,a + b) <∞;
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Dirichlet form approach

Theorem (continued)
(C6) for every ε > 0 there is n0 ∈ N such that for all n0 ≤ m ≤ n and all

f ∈ L2(Zd
m),

En(rnemf , rnemf )
1/2 ≤ Em(f , f )1/2 + ε;

(C7) for any sufficiently small ε > 0 and large m ∈ N,

lim
n↗∞

Ēn
m,ε(f , f ) = Em,ε(f , f ), f ∈ CLip

c (Rd ),

where
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Dirichlet form approach

Theorem (continued)
(C7)

Em,ε(f , f ) :=
1
2

∫
{(x ,y)∈Bm(0)×Bm(0): |x−y |>ε}

(f (y)−f (x))2ks(x , y)dxdy ,

Ēn
m,ε(f , f ) :=

nd

2

∫
{(x ,y)∈Bm(0)×Bm(0): |x−y |>ε}

(f (y)−f (x))2C̄n
s (x , y)dxdy ,

and

C̄n
s (x , y) :=

{
Cn

s (a,b), x ∈ ā and y ∈ b̄
0, x /∈ ā or y /∈ b̄;
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Dirichlet form approach

Theorem (continued)

(C8)
∫

B1(0)
|y |2|k(x , x + y)− ndCn([x ]n, [x ]n + [y ]n)|dy

L2
loc(Rd ,dx)
−−−−−−−→

n↗∞
0;

(C9)
∫

Bc
1(0)
|k(x , x + y)− ndCn([x ]n, [x ]n + [y ]n)|dy

L2
loc(Rd ,dx)
−−−−−−−→

n↗∞
0;

(C10) for all R > 0 large enough,

∫
Bc

2R(0)

(∫
BR(−x)

k(x , x + y)dy

)2

dx <∞;
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Dirichlet form approach

Theorem (continued)
(C11) for all R > 0 large enough,

∫
Bc

2R(0)

(∫
BR(−x)

|k(x , x + y)− ndCn([x ]n, [x ]n + [y ]n)|dy

)2

dx

n↗∞−−−→ 0;

(C12)
∫

B1(0)
|y ||k(x , x + y)− k(x , x − y)− ndCn([x ]n, [x ]n + [y ]n)

+ndCn([x ]n, [x ]n − [y ]n)|dy
L2

loc(Rd ,dx)
−−−−−−−→

n↗∞
0.

The the forms Hn, n ∈ N, converge to H in Mosco sense.
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Dirichlet form approach

For 0 < p ≤ 1 define

Cn,p(a,b) :=

 nd
∫

ā

∫
b̄

k(x , y)dxdy , |a− b| > 2
√

d
np

0, |a− b| ≤ 2
√

d
np .

The conditions in (T2)-(T4) will be satisfied if

for every ρ > 0,

sup
x∈Rd

∫
Bc
ρ(x)

k(x , y)dy <∞;

lim
r↗∞

sup
x∈Rd

∫
Bc

r (x)
k(x , y)dy = 0;
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Dirichlet form approach
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Dirichlet form approach

there exists ρ > 0 such that

lim sup
ε↘0

sup
x∈Rd

∣∣∣∣∣
∫

Bρ(x)\Bε(x)
(yi − xi)k(x , y)dy

∣∣∣∣∣ <∞
lim sup
ε↘0

sup
x∈Rd

∫
B√dεp\B√dεp(x)−(

√
d/2)ε(x)

|yi − xi |k(x , y)dx <∞

lim sup
ε↘0

ε sup
x∈Rd

∫
Bρ(x)\Bεp (x)

k(x , y)dy <∞,
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Dirichlet form approach

there exists ρ > 0 such that

lim sup
ε↘0

sup
x∈Rd

∣∣∣∣∣
∫

Bρ(x)\Bε(x)
(yi − xi)(yj − xj)k(x , y)dy

∣∣∣∣∣ <∞
lim sup
ε↘0

sup
x∈Rd

∫
B√dεp (x)\B√dεp−(

√
d/2)ε(x)

|yi − xi ||yj − xj |k(x , y)dx <∞

lim sup
ε↘0

ε sup
x∈Rd

∫
Bρ(x)\Bεp (x)

|yi − xi |k(x , y)dy <∞
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Dirichlet form approach

Examples
Symmetric processes.

Non-symmetric Lévy processes: Let B ⊆ Rd be Borel and let
ν1(dy) = n1(y)dy and ν2(dy) = n2(y)dy be Lévy measures.
Define

ν(dy) :=

{
ν1(dy), y ∈ B
ν2(dy), y ∈ Bc .

Stable-like processes: Let α : Rd −→ (0,2) be Borel measurable
such that 0 < α ≤ α(x) ≤ α < 2 and∫ 1

0

(β(u)| log u|)2

u1+α
du <∞,

where β(u) := sup|x−y |≤u |α(x)− α(y)|.
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Dirichlet form approach

Examples
Then, the (non-symmetric) kernel

k(x , y) := γ(x)|y − x |−α(x)−d

defines a regular lower bounded semi-Dirichlet form whose
corresponding Hunt process is called stable-like process. Here

γ(x) := α(x)2α(x)−1 Γ(α(x)/2 + d/2)

πd/2Γ(1− α(x)/2)
.
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T h a n k y o u f o r y o u r a t t e n t i o n !
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