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Introduction

Option pricing with Lévy processes

The financial market consists of n risky assets S1, . . . ,Sn such that

S i
t = S i

0e
X i
t ,

where (X 1, . . . ,X n) is a Lévy process under the risk-neutral probability P.

We consider a derivative product whose value (pay-off) at time T is given by a

functional P(S) which depends of the entire trajectory of the stocks.

To compute its price at time 0, evaluate the expectation E [P(S)].

• If S is one-dimensional and P depends on ST only, E[P(S)] is computed by

Fourier transform using the Lévy-Khintchine formula (Carr & Madan ’98)

• If the dimension of S is low and path dependence is weak: partial

integro-differential equations (Cont & Voltchkova ’05), Fourier time stepping

(Fang & Oosterlee ’08) and related deterministic methods

• High dimension or strong path dependence: Monte Carlo method
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where (X 1, . . . ,X n) is a Lévy process under the risk-neutral probability P.

We consider a derivative product whose value (pay-off) at time T is given by a

functional P(S) which depends of the entire trajectory of the stocks.

To compute its price at time 0, evaluate the expectation E [P(S)].

• If S is one-dimensional and P depends on ST only, E[P(S)] is computed by
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Introduction

Monte Carlo method for Lévy processes

The Monte Carlo method relies on the Law of Large Numbers to simulate the

expectation :

P̂N :=
1

N

N∑
j=1

P(S (j))→ E [P(S)] , as N →∞

• Simulation methods exist for all parametric Lévy models, including

multidimensional Lévy processes

The precision of standard Monte Carlo is often too low for real-time applications,

and various error reduction techniques must be applied

• Multilevel Monte Carlo (Giles ’08, Giles & Xia ’14 for Lévy models)

• Quasi Monte Carlo (Leobachter ’06, Avramidis & L’Ecuyer ’06)

• Variance reduction via importance sampling (Badouraly Kassim et al. ’15,

Guasoni & Robertson ’08, Robertson ’10, Glasserman et al. ’99)
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Introduction

Importance sampling

For any probability measure Q equivalent to P,

E[P(S)] = EQ
[
dP
dQ

P(S)

]
This leads to the importance sampling estimator

P̂Q
N :=

1

N

N∑
j=1

[
dP
dQ

](j)

P(S
(j)
Q ),

where S
(j)
Q are sample trajectories of S under the measure Q.

For efficient variance reduction, find a probability measure Q such that S is easy

to simulate under Q and

VarQ

[
P(S)

dP
dQ

]
� VarP [P(S)] .
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Introduction

Importance sampling for Lévy processes

For Lévy processes, a natural choice of probability is the Esscher transform

dPθ

dP
=

e〈θ,XT 〉

E
[
e〈θ,XT 〉

]
For path-dependent payoffs, we take the time-dependent Essher transform

dPθ

dP
=

e
∫

[0,T ]
Xt ·θ(dt)

E
[
e
∫

[0,T ]
Xt ·θ(dt)

]
where θ is a (deterministic) bounded Rn-valued measure on [0,T ]. The class of

such measures is denoted by M.

Under Pθ, the process X has independent increments and is thus easy to simulate.
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Introduction

Finding the optimal parameter θ

The optimal choice of θ should minimize the variance of the estimator under Pθ,

VarPθ

(
P

dP
dPθ

)
= EP

[
P2 dP

dPθ

]
− E [P]2

Denoting H(X ) = logP(S), the minimization problem writes

inf
θ∈M

EP

[
exp

{
2H(X )−

∫
[0,T ]

Xt · θ(dt) +

∫ T

0

G (θ([t,T ]))dt

}]
,

where

G (θ) = 〈θ, µ〉+

∫
Rn

(e〈θ,x〉 − 1− 〈θ, x〉1|x|≤1)ν(dx).

Inspired by the works of Glasserman et al. ’99 (Gaussian vectors), Guasoni and

Robertson ’08 (Black-Scholes model), Robertson ’10 (stochastic volatility), we

approximate the optimal parameter θ∗ by minimizing a proxy for the variance

computed using the theory of large deviations.
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Large deviations for Lévy processes

Large Deviations Principle

Let X be a Haussdorf topological space endowed with its Borel σ-field.

Definition : Large Deviation Principle

A rate function is a [0,∞]-valued lower semi-continuous function on X . It is said

to be a good rate function is its level sets are compact.

A family {X ε} of X -valued random variables is said to obey a LDP in X with rate

function I if for each open subset G ⊂ X and each closed subset F ⊂ X

lim sup
ε→0

ε logP [X ε ∈ F ] ≤ − inf
x∈F

I (x)

and

lim inf
ε→0

ε logP [X ε ∈ G ] ≥ − inf
x∈F

I (x)
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Large deviations for Lévy processes

Example: Schilder’s theorem

Theorem

• Let X be the space of continuous paths on [0,T ] vanishing at zero endowed

with the uniform topology

• Let W be a standard Brownian motion and denote X ε =
√
εW

Then, (X ε) satisfies the LDP with good rate function

I (x) =


1

2

∫ T

0

ẋ2
t dt, x abs. cont. with

∫ T

0

ẋ2
t dt <∞

+∞, otherwise.
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Large deviations for Lévy processes

Varadhan’s lemma

Varadhan’s lemma (extension by Guasoni & Robertson ’08)

Let {X ε} be a family of X -valued random variables satisfying the LDP with a

good rate fuction I : X → [−∞,∞[ and let φ : X → [−∞,∞[ be such that

{φ > −∞} is open and φ is continuous on it. Assume further that for some γ > 1,

lim sup
ε→0

ε logE
[
e
γφ(Xε)
ε

]
<∞

Then,

lim
ε→0

ε logE
[
e
φ(Xε)
ε

]
= sup

x∈X
{φ(x)− I (x)}

Recall the minimization problem

inf
θ∈M

EP

[
exp

{
2H(X )−

∫
[0,T ]

Xt · θ(dt) +

∫ T

0

G (θ([t,T ]))dt

}]
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Large deviations for Lévy processes

Notation and topology

• Let D be the space of cadlag paths x : [0,T ]→ Rn with x(0) = 0

• Let Vr be the space of cadlag functions on [0,T ] with bounded variation

• Let V ac
r be the subspace of Vr consisting of absolutely continuous functions

x such that x0 = 0, equipped with the norm ‖x‖ =
∫ T

0
|ẋs |ds

• Recall that M denotes the class of bounded Rn-valued measures on [0,T ]

• Let σ(D,M) be the topology on D defined by

lim
n

yn = y ⇔ ∀µ ∈ M, lim
n

∫
[0,T ]

yndµ =

∫
[0,T ]

ydµ.

• σ(D,M) is stronger than the topology of pointwise convergence but weaker

than the uniform topology
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Large deviations for Lévy processes

Large deviations principle for Lévy processes

Let X ε
t = εXt/ε and assume that there is λ0 > 0 with

∫
|x|>1

eλ0|x|ν(dx) <∞.

Theorem [Leonard, 1999]

The family {X ε} satisfies the LDP in D for the σ(D,M)-topology with the good

rate function J̄(y) where

J̄(x) =


sup
µ∈M

{∫
[0,T ]

xtµ(dt)−
∫ T

0

G (µ([t,T ]))dt

}
if x ∈ Vr

+∞ otherwise,

where we recall that

G (λ) = logE
[
e〈λ,X1〉

]
De Acosta ’94 proves an LDP for the uniform topology under the assumption that

all exponential moments are finite.
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Large deviations for Lévy processes

Alternative form of the rate function

Define the Fenchel conjugate of G :

La(v) = sup
λ∈Rd

{〈λ, v〉 − G (λ)}

and its recession function

Ls(v) = lim
u→∞

La(uv)

u
.

Then,

J̄(x) =


∫

[0,T ]

La(
dẋa
dt

(t))dt +

∫
[0,T ]

Ls(
dẋs
dµ

(t))dµ if x ∈ Vr

+∞ otherwise,

where ẋ = ẋa + ẋs is the decomposition of the measure ẋ ∈ M in absolutely

continuous and singular pars with respect to dt and µ in any nonnegative measure

on [0,T ], with respect to which ẋs in absolutely continuous.
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Main results

A first result

Proposition

Assume that the log payoff H is continuous for the σ(D,M)-topology (e.g.

pointwise continuous) on the open set {H > −∞} and satisfies

H(x) ≤ A + B sups∈[0,T ] |xs |. Then, Varadhan’s lemma applies with

φθ(X ) = 2H(X )−
∫

[0,T ]

Xt · θ(dt) +

∫
[0,T ]

G (θ([t,T ]))dt

so that

lim
ε→0

ε logEP

[
e
φθ (Xε)
ε

]
= sup

x∈D

{
φθ(x)− J̄(x)

}
= sup

x∈Vr

{
φθ(x)−

∫
[0,T ]

La(
dẋa
dt

(t))dt −
∫

[0,T ]

Ls(
dẋs
dµ

(t))dµ

}
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Main results

Asymptotic variance reduction

Definition

We say that the variance reduction parameter θ∗ is asymptotically optimal if it

minimizes

sup
x∈Vr

{
φθ(x)−

∫
[0,T ]

La(
dẋa
dt

(t))dt −
∫

[0,T ]

Ls(
dẋs
dµ

(t))dµ

}

with

φθ(X ) = 2H(X )−
∫

[0,T ]

Xtθ(dt) +

∫
[0,T ]

G (θ([t,T ]))dt

over θ ∈ M.

⇒ optimal variance reduction in the large-time asymptotic regime
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Main results

A more explicit result

Theorem

Let H : D → R+ be concave, and let the following assumptions hold true:

• H is upper semicontinuous on V ac
r and for every x ∈ Vr there is a sequence

{xn} ⊂ V ac
r converging to x in the σ(D,M)-topology, with H(xn)→ H(x).

• G is lower semicontinuous and its effective domain is bounded.

Then,

inf
θ∈M

sup
v∈Vr

{φθ(x)− J̄(x)} = 2 inf
θ∈M
{Ĥ(θ) +

∫
[0,T ]

G (θ([t,T ]))dt}

where

Ĥ(θ) = sup
x∈Vr

{H(x)−
∫

[0,T ]

xtθ(dt)}.

Moreover, if the infimum in the left-hand side of is attained by θ∗ then the same

θ∗ attains the infimum in the right-hand side.
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Main results

Proof (sketch)

inf
θ∈M

sup
x∈Vr

{φθ(x)− J̄(x)} = inf
θ∈M

sup
x∈Vr

inf
µ∈M
{2H(X )−

∫
[0,T ]

Xt(θ(dt) + µ(dt))

+

∫
[0,T ]

G (θ([t,T ]))dt +

∫
[0,T ]

G (µ([t,T ]))dt}

= inf
θ∈M

inf
µ∈M

sup
x∈Vr

{2H(X )−
∫

[0,T ]

Xt(θ(dt) + µ(dt))

+

∫
[0,T ]

G (θ([t,T ]))dt +

∫
[0,T ]

G (µ([t,T ]))dt}

= inf
θ∈M

inf
µ∈M
{2Ĥ

(
θ + µ

2

)
+

∫
[0,T ]

G (θ([t,T ]))dt +

∫
[0,T ]

G (µ([t,T ]))dt}

= 2 inf
θ∈M
{Ĥ(θ) +

∫
[0,T ]

G (θ([t,T ]))dt},

where the last equality follows by convexity of G .
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Main results

Concavity of log-payoff

Let P̃(X ) = P(S).

Lemma

H is concave whenever P̃ is concave on P̃ > 0 and the set {P̃ > 0} is convex.

Proof.

Let 0 < α < 1. Then,

αH(a) + (1− α)H(b) = α log P̃(a) + (1− α) log P̃(b)

≤ log(αP̃(a) + (1− α)P̃(b)) ≤ log P̃(αa + (1− α)b) = H(αa + (1− α)b).
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Examples: European options

General European option

Assume that H ((xt)0≤t≤T ) = h(xT ) with h : Rn → R concave and continuous.

Then, θ is a Dirac measure at T , of size

θ∗ = arg min
θ∈Rn
{ĥ(θ) + TG (θ)},

where ĥ(θ) = supv∈Rn{h(v)− vθ}.

• The function G (θ) is known explicitly in most models

• Under the measure Pθ, X is still a Lévy process and often falls into the same

parametric class since EPθ [euX1 ] = eG(θ+u)−G(θ).

• To compute the optimal parameter θ∗, solve a convex optimization problem

in dimension n.
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Examples: European options

European basket put option

Let P(S1, . . . ,Sn) = (K − S1 − · · · − Sn)+. Then,

h(x1, . . . , xn) = log(K − ex1 − · · · − exn)+.

The function P̃ = (K − ex1 − · · · − exn)+ is concave on {P̃ > 0} by convexity of

the exponential and the set {ex1 + . . . exn < K} is convex.

The convex conjugate of h is given by

ĥ(θ) =


+∞ θk ≥ 0 for some k

log
K

1−
∑

k θk
−
∑
k

θk log
−Kθk

1−
∑

j θj
otherwise.
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Examples: European options

Multivariate variance gamma model

Let b ∈ Rn, Σ be a positive definite n × n matrix, and define

Xt = µt + bΓt + ΣWΓt ,

where Γ is a gamma process with E[Γt ] = t and Var Γt = t/λ, and µ is chosen to

have E[eX
i
t ] = 1 for all t and i = 1, . . . , n. Then,

G (θ) = 〈θ, µ〉 − λ log

(
1− 〈θ, b〉

λ
− 〈Σθ, θ〉

2λ

)
, θ ∈ Rn.

with

µi = λ log

(
1− bi

λ
− Σii

2λ

)
, i = 1, . . . , n.

Under the measure Pθ

G θ(u) = 〈u, µ〉−λ log

(
1− 〈u, b + Σθ〉

λu∗
− 〈Σu, u〉

2λu∗

)
, u∗ = 1− 〈θ, b〉

λ
− 〈Σθ, θ〉

2λ
.
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Examples: European options

European put in the variance gamma model

In the first example, we let n = 1 and price a European put option with pay-off

P(S) = (K − S)+.

The model parameters are λ = 1, b = −0.2 and
√

Σ = 0.2, which corresponds to

annualized volatility of 28%, skewness of −1.77 and excess kurtosis of 2.25.

Variance reduction ratios as function of time to maturity T , for K = 1.

T 0.25 0.5 1 2 3

Optimal parameter θ∗ −2.77 −2.45 −2.06 −1.65 −1.41

Variance ratio 3.38 3.61 3.78 3.75 3.67

Variance reduction ratios as function of strike K , for T = 1.

K 0.5 0.7 0.9 1.1 1.3 1.5

Optimal parameter θ∗ −2.84 −2.56 −2.24 −1.88 −1.54 −1.25

Variance ratio 17.44 6.80 4.14 3.19 3.63 3.63
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Examples: European options

Optimality of θ∗

How optimal is the asymptotically optimal θ∗ ?

3.0 2.5 2.0 1.5 1.0 0.5 0.0
1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5 1e 7

Var(θ)
θ ∗

3.5 3.0 2.5 2.0 1.5 1.0
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5 1e 9

Var(θ)
θ ∗

Left: T = 1, K = 1. Right: T = 1, K = 0.5.
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Examples: European options

Basket put in the variance gamma model

In this example, we let n = 3 and price a European basket put option with pay-off

P(S) = (K − S1 − S2 − S3)+. The model parameters are

λ = 1, b =


−0.2

−0.2

−0.2

 and Σ =


0.04 0.02 0.02

0.02 0.04 0.02

0.02 0.02 0.04

 .

Variance reduction ratios as function of time to maturity T , for K = 1.

T 0.25 0.5 1 2 3

Variance ratio 3.55 3.67 3.85 3.81 3.76

K 1.5 2 2.5 3 3.5 4 4.5

Variance ratio, T = 1 23.1 9.78 5.53 3.80 3.23 4.22 5.14

Variance ratio, T = 3 6.63 4.88 4.35 3.81 2.96 2.42 2.19
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Examples: path-dependent options
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3 Main results

4 Examples: European options

5 Examples: path-dependent options
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Examples: path-dependent options

Asian put option: checking the assumptions

For the Asian put option,

P(S) =

(
K − 1

T

∫ T

0

Stdt

)+

⇒ H(x) = log

(
K − 1

T

∫ T

0

extdt

)+

• K − 1
T

∫ T

0
extdt is concave by convexity of the exponential;

• For x , y such that 1
T

∫ T

0
extdt < K and 1

T

∫ T

0
eytdt < K ,

1

T

∫ T

0

eαxt+(1−α)ytdt ≤ 1

T

∫ T

0

(αext + (1− α)eyt ) dt < K ,

hence, {P̃ > 0} is convex.

• H(x) is usc in the σ(D,M) topology but may not be continuous but

discretely sampled Asian option is continuous.
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Examples: path-dependent options

Asian put option: computing the Fenchel transform

If θ is absolutely continuous, with density denoted by θt , which satisfies θt ≤ 0 for

all t ∈ [0,T ] then the convex conjugate of H is given by

Ĥ(θ) = log
K

1−
∫ T

0
θtdt

−
∫ T

0

θt log
−KTθt

1−
∫ T

0
θsds

dt.

Otherwise it is equal to +∞.
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Examples: path-dependent options

Asian put option: optimal importance sampling

To compute the optimal importance sampling measure θ∗, we solve

min
θ∈M
{Ĥ(θ) +

∫ T

0

G (θ([t,T ]))dt}

= min
θt≤0

(
1−

∫ T

0

θsds
)

log
K

1−
∫ T

0
θtdt

−
∫ T

0

θt log(−Tθt)dt +

∫ T

0

G
(∫ T

t

θs

)
dt

By Pontriagin’s principle, ψt =
∫ T

T−t θ
∗
s ds is solution of the system

ṗt = −G ′(ψt), pT = − log
K

1− ψT
+ 1,

T ψ̇t = −ept+1, ψ0 = 0.

This can be integrated explicitly:

ψt = F−1
c (−t), with F (x) =

∫ x

0

dy

c + G (y)
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Examples: path-dependent options

Asian put: numerics

In the same one-dimensional model as above, we price an Asian put option with

pay-off P(S) =
(
K − 1

T

∫ T

0
Stdt

)+

, for T = 1.

Variance reduction ratios as function of strike K .

K 0.5 0.7 0.9 1.1 1.3 1.5

Ratio 39.7 10.6 4.82 3.21 5.08 6.91 0.0 0.2 0.4 0.6 0.8 1.0

t

3.0

2.5

2.0

1.5

1.0

0.5

0.0

θ
∗
([
t,
T
])

Optimal θ∗ for K = 1
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