Complete Subordinators with nested ranges

Philippe Marchal

CNRS and Université Paris 13

Philippe Marchal Complete Subordinators with nested ranges

Special Subordinators

Complete subordinators are a subclass of special subordinators.

Analytic definition: a subordinator (S_t) with exponent ψ is special if there exists a subordinator (S
_t) with exponent ψ
 such that for every λ ≥ 0,

$$\psi(\lambda)\widehat{\psi}(\lambda) = \lambda$$

Special Subordinators

Complete subordinators are a subclass of special subordinators.

Analytic definition: a subordinator (S_t) with exponent ψ is special if there exists a subordinator (S_t) with exponent ψ̂ such that for every λ ≥ 0,

$$\psi(\lambda)\widehat{\psi}(\lambda)=\lambda$$

• Probabilistic definition: a subordinator (S_t) is special if there exists a subordinator (\widehat{S}_t) satisfying, for every $t \ge 0$

$$G_t \stackrel{distr}{=} t - \widehat{G}_t$$

where $G_t = \sup_r \{S_r, S_r \leq t\}$.

Special Subordinators

Complete subordinators are a subclass of special subordinators.

Analytic definition: a subordinator (S_t) with exponent ψ is special if there exists a subordinator (S_t) with exponent ψ
 such that for every λ ≥ 0,

$$\psi(\lambda)\widehat{\psi}(\lambda)=\lambda$$

• Probabilistic definition: a subordinator (S_t) is special if there exists a subordinator (\widehat{S}_t) satisfying, for every $t \ge 0$

$$G_t \stackrel{distr}{=} t - \widehat{G}_t$$

where $G_t = \sup_r \{S_r, S_r \leq t\}$.

The probabilistic definition only depends on the range $\overline{\{S_t, t \ge 0\}}$ of *S*, regardless of the time parametrization.

The probabilistic definition

$$G_t \stackrel{distr}{=} t - \widehat{G}_t$$

Two well-known examples:

$$G_t \stackrel{distr}{=} t - \widehat{G}_t$$

Two well-known examples:

(X_t) real-valued Lévy process.
 (S_t) subordinator of ladder times (times at which X reaches a new maximum). Then S is special.
 The dual S is the subordinator of dual ladder times (times at which X reaches a new minimum).

$$G_t \stackrel{distr}{=} t - \widehat{G}_t$$

Two well-known examples:

- (X_t) real-valued Lévy process.
 (S_t) subordinator of ladder times (times at which X reaches a new maximum). Then S is special. The dual S is the subordinator of dual ladder times (times at which X reaches a new minimum).
- Random covering (Fitzsimmons, Fristedt, Shepp).
 N Poisson point process on ℝ²₊ with intensity dt ⊗ μ(dz).
 N generates a random cloud of points (t, z_t).
 The uncovered set ℝ₊ − ∪_t(t, t + z_t) is the range of a special subordinator.

$$G_t \stackrel{distr}{=} t - \widehat{G}_t$$

Two well-known examples:

- (X_t) real-valued Lévy process.
 (S_t) subordinator of ladder times (times at which X reaches a new maximum). Then S is special. The dual S is the subordinator of dual ladder times (times at which X reaches a new minimum).
- Random covering (Fitzsimmons, Fristedt, Shepp).
 N Poisson point process on ℝ²₊ with intensity dt ⊗ μ(dz).
 N generates a random cloud of points (t, z_t).
 The uncovered set ℝ₊ − ∪_t(t, t + z_t) is the range of a special subordinator. What is the dual ?

The construction of special subordinators from the ladder times of Lévy processes works on a general state space E, as soon as there is a total order on E.

The construction of special subordinators from the ladder times of Lévy processes works on a general state space E, as soon as there is a total order on E.

Example

 \mathbb{R}^3 equipped with the lexicographic order:

 $(1,0,0) \ge (0,1,0) \ge (0,0,1).$

 (X_t) Lévy process with jumps:

- (0,0,1) (rate 1)
- (0, -1, 0) (rate 1)
- (1, 0, 0) (rate 1)

The construction of special subordinators from the ladder times of Lévy processes works on a general state space E, as soon as there is a total order on E.

Example

 \mathbb{R}^3 equipped with the lexicographic order:

 $(1,0,0) \ge (0,1,0) \ge (0,0,1).$

 (X_t) Lévy process with jumps:

- (0,0,1) (rate 1)
- (0, -1, 0) (rate 1)
- (1,0,0) (rate 1)

How much can this example be generalized ?

N Poisson Point process on ℝ₊ × [0, 1], intensity dt ⊗ z⁻²dz
α : [0, 1] → [0, 1] measurable function

From every point (t, h_t) of \mathcal{N} draw a vertical wall up to the x-axis. Colour this wall green w.p. $\alpha(t)$ and red w.p. $1 - \alpha(t)$.

N Poisson Point process on ℝ₊ × [0, 1], intensity dt ⊗ z⁻²dz
α : [0, 1] → [0, 1] measurable function

From every point (t, h_t) of \mathcal{N} draw a vertical wall up to the x-axis. Colour this wall green w.p. $\alpha(t)$ and red w.p. $1 - \alpha(t)$.

 s > 0 percolates if, from the vertical half-line with abscissa s, looking to the left, on can only see green walls. Then the set of points that percolate is the range of a special subordinator.

N Poisson Point process on ℝ₊ × [0, 1], intensity dt ⊗ z⁻²dz
α : [0, 1] → [0, 1] measurable function

From every point (t, h_t) of \mathcal{N} draw a vertical wall up to the x-axis. Colour this wall green w.p. $\alpha(t)$ and red w.p. $1 - \alpha(t)$.

- s > 0 percolates if, from the vertical half-line with abscissa s, looking to the left, on can only see green walls. Then the set of points that percolate is the range of a special subordinator.
- s ∈ (0, t) dual-percolates if, from the vertical half-line with abscissa s, looking to the right up to t, one can only see red walls.

N Poisson Point process on ℝ₊ × [0, 1], intensity dt ⊗ z⁻²dz
α : [0, 1] → [0, 1] measurable function

From every point (t, h_t) of \mathcal{N} draw a vertical wall up to the x-axis. Colour this wall green w.p. $\alpha(t)$ and red w.p. $1 - \alpha(t)$.

- s > 0 percolates if, from the vertical half-line with abscissa s, looking to the left, on can only see green walls. Then the set of points that percolate is the range of a special subordinator.
- s ∈ (0, t) dual-percolates if, from the vertical half-line with abscissa s, looking to the right up to t, one can only see red walls.
- If s percolates and s' < s, then s' cannot dual-percolate since the highest wall between s' and s is green. Conversely, if s dual-percolates and s' > s, s' cannot percolate.

$$G_t \stackrel{distr}{=} t - \widehat{G}_t$$

Coupling

For every (t, h_t) take an independent, uniform r.v. $U_t \in [0, 1]$. Say that the wall at t is green if $U_t \leq \alpha(t)$ and red otherwise.

Coupling

For every (t, h_t) take an independent, uniform r.v. $U_t \in [0, 1]$. Say that the wall at t is green if $U_t \leq \alpha(t)$ and red otherwise.

Theorem

The construction above generates the range of a subordinator with exponent

$$\phi^{(\alpha)}(\lambda) = \exp \int_0^1 \frac{(\lambda-1)\alpha(x)}{1+(\lambda-1)x} dx$$

Its dual has exponent $\phi^{(1-\alpha)}$.

One can construct, on a single probability space, a family of random sets $\mathcal{R}^{(\alpha)}$ indexed by all measurable functions α , such that

- $\mathcal{R}^{(\alpha)}$ is the range of a subordinator with exponent $\phi^{(\alpha)}$
- if α , β satisfy, for every $x \in [0, 1]$, $\alpha(x) \leq \beta(x)$, then $\mathcal{R}^{(\alpha)} \subset \mathcal{R}^{(\beta)}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

- One exactly obtains the set of all **complete** subordinators (remark by V. Rivero). A subordinator is complete if its Lévy measure has a completely monotone density.
- When the function α is constant, one gets an α -stable subordinator.
- For constant α, the nested construction corresponds to the Bolthausen-Sznitman coalescent (resp. the Ruelle cascade)
- Multiplying α by a constant c ∈ (0, 1) corresponds to Bochner's subordination by a c-stable subordinator.
- The construction also works in discrete time

The previous construction can be generalized by replacing the horizontal floor by a random floor that has the law of an independent Lévy process. One still obtains a special subordinator whose dual is constructed similarly.

However, computing the exponent becomes very intricate.

The previous construction can be generalized by replacing the horizontal floor by a random floor that has the law of an independent Lévy process. One still obtains a special subordinator whose dual is constructed similarly.

However, computing the exponent becomes very intricate.

A simple case

- The floor is deterministic with slope 1.
- \mathcal{N} Poisson Point process on $\mathbb{R}_+ imes [0,1]$ with intensity $dt \otimes \mu(dz).$
- All walls are red.

Then *s* percolates if, from *s*, one can see no red wall. This is exactly the random covering model.