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Special Subordinators

Complete subordinators are a subclass of special subordinators.

o Analytic definition: a subordinator (S;) with exponent ¢ is
special if there exists a subordinator (S;) with exponent
such that for every A > 0,

PNP(N) = A
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Special Subordinators

Complete subordinators are a subclass of special subordinators.

o Analytic definition: a subordinator (S;) with exponent ¢ is
special if there exists a subordinator (S;) with exponent
such that for every A > 0,

~

PNP(A) = A

o Probabilistic definition: a subordinator (S) is special if there
exists a subordinator (S;) satisfying, for every t > 0
distr

Gt = t—é\t

where G = sup, {5, S, < t}.
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Special Subordinators

Complete subordinators are a subclass of special subordinators.

o Analytic definition: a subordinator (S;) with exponent ¢ is
special if there exists a subordinator (S;) with exponent
such that for every A > 0,

~

PNP(A) = A

o Probabilistic definition: a subordinator (S) is special if there
exists a subordinator (S;) satisfying, for every t > 0

distr

Gt = t—é\t

where G = sup, {5, S, < t}.

The probabilistic definition only depends on the range {S;,t > 0}
of S, regardless of the time parametrization.
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The probabilistic definition

distr

Gt - t—é\t

Two well-known examples:
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The probabilistic definition

distr -~
Gt = t— Gt
Two well-known examples:

@ (X;) real-valued Lévy process.
(S5¢) subordinator of ladder times (times at which X reaches a

new maximum). Then S is special.
The dual S is the subordinator of dual ladder times (times at

which X reaches a new minimum).
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The probabilistic definition

distr -~
Gt = t— Gt
Two well-known examples:

o (X:) real-valued Lévy process.
(S5¢) subordinator of ladder times (times at which X reaches a
new maximum). Then S is special.
The dual S is the subordinator of dual ladder times (times at
which X reaches a new minimum).

@ Random covering (Fitzsimmons, Fristedt, Shepp).
N Poisson point process on R? with intensity dt ® u(dz).
N generates a random cloud of points (t, z;).
The uncovered set Ry — Ug(t, t + z;) is the range of a special
subordinator.
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The probabilistic definition

distr -~
Gt = t— Gt
Two well-known examples:

o (X:) real-valued Lévy process.
(S5¢) subordinator of ladder times (times at which X reaches a
new maximum). Then S is special.
The dual S is the subordinator of dual ladder times (times at
which X reaches a new minimum).

@ Random covering (Fitzsimmons, Fristedt, Shepp).
N Poisson point process on R? with intensity dt ® u(dz).
N generates a random cloud of points (t, z;).
The uncovered set Ry — Ug(t, t + z;) is the range of a special
subordinator. What is the dual ?
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Special subordinators and ladder times

The construction of special subordinators from the ladder times of
Lévy processes works on a general state space E, as soon as there
is a total order on E.
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Special subordinators and ladder times

The construction of special subordinators from the ladder times of
Lévy processes works on a general state space E, as soon as there
is a total order on E.
Example
R3 equipped with the lexicographic order:
(1,0,0) > (0,1,0) > (0,0,1).
(Xt) Lévy process with jumps:
e (0,0,1) (rate 1)
e (0,—1,0) (rate 1)
e (1,0,0) (rate 1)
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Special subordinators and ladder times

The construction of special subordinators from the ladder times of
Lévy processes works on a general state space E, as soon as there
is a total order on E.
Example
R3 equipped with the lexicographic order:
(1,0,0) > (0,1,0) > (0,0,1).
(Xt) Lévy process with jumps:
e (0,0,1) (rate 1)
e (0,—1,0) (rate 1)
e (1,0,0) (rate 1)

How much can this example be generalized ?

Philippe Marchal Complete Subordinators with nested ranges



A generalization

e N Poisson Point process on Ry x [0,1], intensity dt ® z~2dz
e «:[0,1] — [0,1] measurable function

From every point (t, h;) of A/ draw a vertical wall up to the x-axis.
Colour this wall green w.p. a(t) and red w.p. 1 — a(t).
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A generalization

e N Poisson Point process on Ry x [0,1], intensity dt ® z~2dz
e «:[0,1] — [0,1] measurable function

From every point (t, h;) of A/ draw a vertical wall up to the x-axis.
Colour this wall green w.p. a(t) and red w.p. 1 — a(t).

@ s > 0 percolates if, from the vertical half-line with abscissa s,
looking to the left, on can only see green walls. Then the set
of points that percolate is the range of a special subordinator.
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A generalization

e N Poisson Point process on Ry x [0,1], intensity dt ® z~2dz
e «:[0,1] — [0,1] measurable function

From every point (t, h;) of A/ draw a vertical wall up to the x-axis.
Colour this wall green w.p. a(t) and red w.p. 1 — a(t).

@ s > 0 percolates if, from the vertical half-line with abscissa s,
looking to the left, on can only see green walls. Then the set
of points that percolate is the range of a special subordinator.

e s € (0, t) dual-percolates if, from the vertical half-line with
abscissa s, looking to the right up to t, one can only see red
walls.
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A generalization

e N Poisson Point process on Ry x [0,1], intensity dt ® z~2dz
e «:[0,1] — [0,1] measurable function

From every point (t, h;) of A/ draw a vertical wall up to the x-axis.
Colour this wall green w.p. a(t) and red w.p. 1 — a(t).

@ s > 0 percolates if, from the vertical half-line with abscissa s,
looking to the left, on can only see green walls. Then the set
of points that percolate is the range of a special subordinator.

e s € (0, t) dual-percolates if, from the vertical half-line with
abscissa s, looking to the right up to t, one can only see red
walls.

e If s percolates and s’ < s, then s’ cannot dual-percolate since
the highest wall between s’ and s is green. Conversely, if s
dual-percolates and s’ > s, s’ cannot percolate.

distr

~
Gt = t— G
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Nested ranges

Coupling
For every (t, hy) take an independent, uniform r.v. U; € [0,1]. Say
that the wall at t is green if U; < a(t) and red otherwise.
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Nested ranges

Coupling
For every (t, hy) take an independent, uniform r.v. U; € [0,1]. Say
that the wall at t is green if U; < a(t) and red otherwise.

Theorem

The construction above generates the range of a subordinator with

exponent .
(@)Y _ (A = Da(x)
¢ (A)_exP/o 1+ 0= Dx

Its dual has exponent ¢(1=2).

One can construct, on a single probability space, a family of

random sets R(%) indexed by all measurable functions «, such that
o R js the range of a subordinator with exponent )

e if a, [ satisfy, for every x € [0,1], a(x) < (x), then
R(@) - RB).
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Some remarks

@ One exactly obtains the set of all complete subordinators
(remark by V. Rivero). A subordinator is complete if its Lévy
measure has a completely monotone density.

@ When the function « is constant, one gets an a-stable
subordinator.

@ For constant «, the nested construction corresponds to the
Bolthausen-Sznitman coalescent (resp. the Ruelle cascade)

e Multiplying o by a constant ¢ € (0,1) corresponds to
Bochner's subordination by a c-stable subordinator.

@ The construction also works in discrete time
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Further generalization

The previous construction can be generalized by replacing the
horizontal floor by a random floor that has the law of an
independent Lévy process. One still obtains a special subordinator
whose dual is constructed similarly.

However, computing the exponent becomes very intricate.
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Further generalization

The previous construction can be generalized by replacing the
horizontal floor by a random floor that has the law of an
independent Lévy process. One still obtains a special subordinator
whose dual is constructed similarly.

However, computing the exponent becomes very intricate.

A simple case

@ The floor is deterministic with slope 1.

e N Poisson Point process on R, x [0, 1] with intensity
dt @ p(dz).
o All walls are red.

Then s percolates if, from s, one can see no red wall. This is
exactly the random covering model.
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