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Introduction to Lévy-driven
CARMA Processes
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From ARMA to CARMA
Versatile class of auto-regressive moving-average processes

Xn − ϕ1Xn−1 − . . .− ϕpXn−p = εn + θ1εn−1 + . . .+ θqεn−q

Extensions to
I multivariate models (Vector ARMA)
I continuous-time models (CARMA)

Advantages of using time series models defined in continuous time:
I Allow handling of irregularly spaced data and missing observations

(thus suitable for high-frequency data).
I Allows consistent estimation and inference at different frequencies

Main idea: Difference equations become differential equations

Problem: Definition, Properties and Estimation
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CARMA process - definition

A second-order Lévy-driven continuous-time ARMA(p, q) process is
defined (see e.g. Brockwell (2001), Brockwell (2009)) in terms of a
state-space representation of the formal differential equation

a(D)Y (t) = b(D)DL(t), t > 0. (1)

where D denotes differentiation with respect to t, (L(t))t≥0 is a Lévy
process with σ2 = EL(1)2 <∞,

a(z) : = zp + a1zp−1 + · · ·+ ap,

b(z) : = b0 + b1z + · · ·+ bq−1zq−1 + bqzq,

with bq = 1 and q < p.
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The state-space representation

The observation and state equations are given by

Y (t) = bTX(t) (2)

dX(t) = AX(t)dt + edL(t) (3)

where

A :=


0 1 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 1
−ap −ap−1 . . . −a1

 , X(t) :=


X (t)

X (1)(t)
...

X (p−2)(t)
X (p−1)(t)

 ,

e := [0, . . . , 0, 1]T and b := [b0, . . . , bp−1]T .
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Lévy driven CARMA processes

Assumption
E[L(1)] = 0 and E[L(1)]2 = σ2 <∞.

The solution X(t) of (3) satisfies

X(t) = eAtX (0) +

∫ t

0
eA(t−u)edL(u). (4)

If all eigenvalues of A have strictly negative real parts, the process
(X(t))t∈R given by

X(t) =

∫ t

−∞
eA(t−u)edL(u)

is a causal strictly stationary solution of (3) for t ∈ R with the
corresponding CARMA process

Y (t) =

∫ t

−∞
bT eA(t−u)edL(u). (5)
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ACF vs Spectral Density
I The spectral density function

f (ω) :=

∫
R
r(h)e−iωhdh

where r(h) = Cov(Y (0),Y (h)) denotes the autocovariance
function of Y .

I It holds
r(h) =

1
2π

∫
R
f (ω)e iωhdω

I For CARMA processes the spectral density function is of the form

f (ω) =
σ2

2π
|b(iω)|2

|a(iω)|2

and is square integrable.
I The Fourier and inverse Fourier transform: a way of communicating

between the time and frequency domain.
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Dependence structure

I Markov properties:
As a solution to a stochastic differential equation, the state space
representation X of a causal MCARMA process is a strong Markov
process.

I Mixing properties:
For a causal MCARMA process the state space representation X is
β-mixing and Y is strongly mixing, both with exponentially decaying
mixing coefficients.
In particular, X and Y are ergodic (X is also geometrically ergodic).
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Sample path properties

I The sample paths of a (causal) CARMA(p, q) process Y with
p > q + 1 are (p − q − 2)-times differentiable and the p − q − 2th
derivative is absolutely continuous.

I If p = q + 1, then ∆Y (t) = bq∆L(t).
I If the driving Lévy process L is a Brownian motion, then the sample

paths of Y are continuous and (p − q − 1)-times continuously
differentiable, provided p > q + 1.
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Statistics of Lévy-driven
CARMA Processes:

A Summary
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What is known about estimating CARMA processes?

I Brockwell, Davis, and Yang (2011), Schlemm and St. (2012):
QML estimation of AR and MA parameters based on equidistant
samples for (multivariate) Lévy-driven CARMA processes
(Anti-Aliasing Condition needed)

I Fasen and Kimmig (2016):
Order selection by information criteria for QML estimators

I Brockwell and Schlemm (2013):
reconstruction of the driving Lévy process using a high-frequency
limit (for equidistant samples) and based on this GMM estimation of
the parameters of the Lévy process (letting the observation time
interval to ∞).

I Ferrazzano and Fuchs (2013):
Alternative approach to recovering the driving Lévy process for
invertible CARMA processes under a high frequency limit
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What is known about estimating CARMA processes?

I Fasen and Fuchs (2013b), Fasen and Fuchs (2013a):
Estimation of power transfer function (also for stable driving Lévy
processes) from discrete-time periodograms under a high-frequency
infinite time horizon limit using equidistant observations.

I Fasen (2014b), Fasen (2016):
(high-frequency infinite horizon) limiting results for sample
autocovariances

I Gillberg (2006):
Estimation of non-equidistantly sampled (Brownian) CARMA
processes by spline interpolation and using results for equidistant
grids
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Estimation of Poisson Sampled
CARMA Processes



Page 16 Lévy-driven CARMA processes: Non-equidistant observations and local stationarity | July 28th, 2016 | Robert Stelzer

The aliasing problem for equidistant observations
Assume we observe a (multivariate) CARMA process Y at discrete,
equally spaced times

Y (h)
n := Y (nh), n ∈ Z, h > 0.
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The aliasing problem for equidistant observations

I The autoregressive and moving average parameters and the variance
of the Lévy process are identifiable from the spectral density of Y , if
the autoregressive and moving average polynomial have no common
zeros.

I The autoregressive and moving average parameters and the variance
of the Lévy process are NOT identifiable from the spectral density of
Y (h), if the autoregressive and moving average polynomial have no
common zeros.

I Anti-aliasing condition: All eigenvalues of A or equivalently all zeros
of the autoregressive polynomial are in the set
{z ∈ C : −π/h < =z < π/h}.

I Under the anti-aliasing condition, the autoregressive and moving
average parameters and the variance of the Lévy process are
identifiable from the spectral density of Y (h), if the autoregressive
and moving average polynomial have no common zeros.
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Poisson Sampling

I Let N be a Poisson process with rate β and jump times {τk} which
is independent of L.

I The CARMA process is observed at {τk} which is equivalent to
observing the process Z given by

dZ (t) := Y (t) dN(t)

I Z can also be understood as an orthogonal random measure with
spectral density

φZ (ω,θ) =β2

σ2

2π

∣∣∣∣∣b(iω)

a(iω)

∣∣∣∣∣
2

+
σ2bT Σb
2πβ

 =
β2σ2

2π

∣∣∣∣∣b(iω)

a(iω)

∣∣∣∣∣
2

+
bT Σb
β

 .
with θ = (a1, . . . , ap, b0, . . . , bq−1) and Σ =

∫∞
0 eAyep eT

p eAT y dy .
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Identifiability under Poisson Sampling

Proposition (Lii and Masry (1992); Masry (1978))
Assume the autoregressive and moving average polynomials have no
common zeros. Then the autoregressive and moving average parameters
and the variance of the Lévy process are identifiable from the spectral
density of Z .
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A Whittle type Estimator
I We assume that we observe Z on [0,T ].

I Setting g1(ω,θ) :=

∣∣∣∣∣ b(iω)
a(iω)

∣∣∣∣∣
2

+ bT Σb
β and

g2(θ) := π bT Σb
β +

∫∞
−∞

(
|b(ix)/a(ix)|2

1+x2

)
dx we define

K̂T (θ) =
1

2πT

∫ ∞
−∞

 log g1(ω,θ)− log g2(θ)

1 + ω2

∣∣∣∣∣
N(T )∑
k=1

e−iωτkY (τk)

∣∣∣∣∣
2
 dω.

I Denoting the parameter space of the model by Θ the Whittle-type
estimator is given by:

θ̂T = arg max
θ∈Θ

K̂T (θ).

I θ0 denotes the true autoregressive and moving average parameters.
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Consistency

Theorem (Bosserhoff, Fechner and St. (2016))
Assume

I Θ is compact,
I the driving Lévy process L has finite fourth moments,
I for all θ ∈ Θ the autoregressive and moving average polynomials

have no common zeros.
Then

θ̂T
P−−−−→

T→∞
θ0.
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The Asymptototic Covariance Matrix
I Let M ∈ R(p+q)×(p+q) be defined by

M := W−1QW ,

where
I W ∈ R(p+q)×(p+q) is given by

wi,j = −
∫ ∞
−∞

∂ log g(ω,θ0)

∂θ0
i

∂ log g(ω,θ0)

∂θ0
j

φZ (ω,θ0)

1 + ω2 dω,

I Q ∈ R(p+q)×(p+q) is given by

qi,j = 2π
{∫ ∞
−∞

∂ log g(ω,θ0)

∂θ0
i

∂ log g(ω,θ0)

∂θ0
j

φ2
Z (ω,θ0)

(1 + ω2)2 dω

+

∫ ∞
−∞

∫ ∞
−∞

∂ log g(ω1,θ
0)

∂θ0
i

∂ log g(ω2,θ
0)

∂θ0
j

φ
(4)
Z (ω1,−ω1, ω2,θ

0)

(1 + ω2
1)(1 + ω2

2)
dω1 dω2

}
.

I with g(ω,θ) = g1(ω,θ)/g2(θ)
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Asymptotic Normality

Theorem (Bosserhoff, Fechner and St. (2016))
Assume

I Θ is compact,
I the driving Lévy process L has finite moments of all orders,
I for all θ ∈ Θ the autoregressive and moving average polynomials

have no common zeros,
I and the matrix W is invertible.

Then
√
T (θ̂T − θ0) is asymptotically normally distributed with mean

zero and covariance matrix M.

Both consistency and asymptotic normality are proven by verifying the
conditions of Lii and Masry (1992) for Lévy-driven CARMA processes.
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Estimating the Variance of the driving Lévy Process

Proposition (Bosserhoff, Fechner and St. (2016))

σ̂2
T :=

2π
β2

∫∞
−∞

IZ,T (ω)
1+ω2 dω

π b̂T
Σ̂b̂

β +
∫∞
−∞

(
|b̂(iω)/â(iω)|2

1+ω2

)
dω

is a consistent estimator of σ2.

Note that we throughout assumed the rate β to be known.
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High-frequency irregularly
sampled data
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Our Approach

I Suppose that we observe a CARMA process at times
t1 < t2 < · · · < tN which are not necessarily uniformly spaced on
[0,T ]. Let

hmax := max
1≤i≤N−1

(ti+1 − ti )

be the maximal distance between observations.
I What can we say about the limiting behaviour of estimators when

the length of the interval T →∞ and the grid size goes to zero (i.e.
hmax −→ 0)?
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Truncated Fourier Transform
The truncated continuous-time Fourier transform of the process Y at a
frequency ω ∈ R:

FT (Y )(ω) :=
1√
T

∫ T

0
Y (t)e−iωtdt.

Lemma (Fechner and St. (2015))

Let Y be a Lévy-driven CARMA process. Then the truncated Fourier
transform of the CARMA process Y at a fixed frequency ω ∈ R is of the
form

FT (Y )(ω) =
1√
T

b(iω)

a(iω)

∫ T

0
e−iωtdL(t)

+
1√
T
bT (iωI − A)−1 (X(0)− e−iωTX(T )

)
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Truncated Fourier Transform: Covariances

Theorem (Fechner and St. (2015))

Let Y be a Lévy-driven CARMA process. Then for ω1, ω2 ∈ R we have

E [FT (Y )(ω1)FT (Y )(ω2)] = σ2fY (ω1)+
1
T K (T , ω1, ω2), ω1 = −ω2

(6)

and

E [FT (Y )(ω1)FT (Y )(ω2)] =
1
T K 1(T , ω1, ω2), ω1 6= −ω2, (7)

where fY is the spectral density function of the process Y , K ,K1 are
bounded functions of T .
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Truncated Fourier Transform: Asymptotic Normality I

Proposition (Fechner and St. (2015))

Let
Z (T ) :=

1√
T

b(0)

a(0)

∫ T

0
dL(t).

Then

dlimT→∞ Z (T ) = dlimT→∞ FT (Y )(0) ∼ N

(
0,
(
b(0)

a(0)

)2
σ2

)

dlimT→∞

∣∣∣∣a(0)Z (T )

b(0)σ2

∣∣∣∣2 = dlimT→∞

∣∣∣∣a(0)FT (Y )(0)

b(0)σ2

∣∣∣∣2 ∼ χ2(1)
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Truncated Fourier Transform: Asymptotic Normality II

Proposition (Fechner and St. (2015))

Assume that ω 6= 0. Put

Z̃ (T ) :=
1√
T

b(iω)

a(iω)

∫ T

0
e−iωtdL(t) and Z (T ) =

[
<Z̃ (T )

=Z̃ (T )

]
.

Then

dlimT→∞ Z (T ) = dlimT→∞

(
<FT (Y )(ω)
=FT (Y )(ω)

)
∼ N (0,Σ),

where

Σ =
σ2

2

∣∣∣∣b(iω)

a(iω)

∣∣∣∣2(1 0
0 1

)
.

The result can be extended to the joint convergence at different
frequencies which are asymptotically independent.
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Non-equidistant grids: Set-Up

I Assume now that for a time horizon T > 0 we observe the CARMA
process Y at N(T ) non-equidistant time points

0 = x (T )
0 < x (T )

1 < · · · < x (T )

N(T )−1 = T .

I Let h(T )
max = maxj=0,...,N(T )−2(x (T )

j+1 − x (T )
j ).

I We denote the trapezoidal approximation of

FT (Y )(ω) :=
1√
T

∫ T

0
Y (t)e−iωtdt

by
TT (Y )(ω).
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Non-equidistant grids: Error Bounds

Proposition (Fechner and St. (2015))
1. We have that

‖TT (Y )(ω)−FT (Y )(ω)‖2
L2 ≤

C1C2
T + C1N(T )2h(T )

max
6

where the constants C1,C2 can be chosen independent of T .

2. So if limT→∞ N(T )h(T )
max

3
= 0, then TT (Y )(ω)−FT (Y )(ω)→ 0 as

T →∞ in L2 and thus in probability.

The proof relies on the smoothness of e−iωt and techniques adopted
from Brockwell and Schlemm (2013) to non-equidsitant grids and
changing time horizons.
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Non-equidistant grids: Asymptotic Normality I

Proposition (Fechner and St. (2015))

If limT→∞ N(T )h(T )
max

3
= 0, then we have for the trapezoidal

approximation of the truncated Fourier transform

dlimT→∞ TT (Y )(0) ∼ N

(
0,
(
b(0)

a(0)

)2
σ2

)

dlimT→∞

∣∣∣∣a(0)TT (Y )(0)

b(0)σ2

∣∣∣∣2 ∼ χ2(1).
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Non-equidistant grids: Asymptotic Normality II

Proposition (Fechner and St. (2015))

If limT→∞ N(T )h(T )
max

3
= 0 and ω 6= 0, then we have for the trapezoidal

approximation of the truncated Fourier transform

dlimT→∞

(
<TT (Y )(ω)
=TT (Y )(ω)

)
∼ N (0,Σ),

where where

Σ =
σ2

2

∣∣∣∣b(iω)

a(iω)

∣∣∣∣2(1 0
0 1

)
.

The result can again be extended to the joint convergence at different
frequencies which are asymptotically independent.
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Simulated Example I
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Figure : QQ plots for CAR(1) process driven by standard Brownian Motion
noise with coefficients a1 = 1 and b0 = 0. Plotted are 2000 paths observed on
a 2000 point (moderately) non-equidistant grid over the interval [0, 10].
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Simulated Example II
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Figure : QQ plots for CARMA(2, 1) process driven by a Variance Gamma noise
with coefficients a2 = 1, a1 = 2, b1 = 1. Plotted are 2000 paths observed on a
2000 point (moderately) non-equidistant grid over the interval [0, 10].
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Locally stationary Lévy-driven
CARMA Processes
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Motivation

I Often observed time series behave stationary in the short run, but
over longer periods the dynamics change.

I Hence time-varying dynamics are encountered.
I Various time-varying models have been defined in discrete time, e.g.

tvARMA, tvGARCH.
I Problem: Statistical inference. How to define meaningful estimators

and obtain appropriate asymptotics?
I Solution: “in-fill asymptotics” and consideration of sequences of

processes
I Intensively studied in discrete time (see e.g. Dahlhaus (2012))
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Stationary Moving Average Processes in Continuous
Time

I Let L be a second order Lévy process.
I For g ∈ L2 or A ∈ L2 a linear/moving average process is given by

Y (t) =

∫
R
g(t − u)dL(u) =

∫
R
e iµtA(µ)ΦL(dµ).

I ΦL is the orthogonal random measure determined by

ΦL([a, b)) =

∫
R

e−ita − e−itb

2πit dL(t).

I A and g are Fourier transforms of each other:

g(t − u) =
1
2π

∫
R
e iµ(t−u)A(µ)dµ and A(µ) =

∫
R
e−iµ(t−u)g(t − u)du.
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Local Stationarity in Continuous Time

Definition (Bitter and St. (2016))
A sequence of linear stochastic processes {YN(t)}N∈N given by

YN(t) =

∫
R
g0

N(Nt,Nt − u)dL(u) =

∫
R
e iµtA0

N(Nt,mu)ΦL(dµ)

is called locally stationary if one of the following equivalent conditions
holds:

I there exists g : R2 → R continuous in the first coordinate such that
g0

N(Nt, ·)→ g(t, ·) for N →∞ in L2 for all ∈ R.
I there exists A : R2 → C continuous in the first coordinate such that

A0
N(Nt, ·)→ A(t, ·) for N →∞ in L2 for all ∈ R.
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Local Stationarity: Immediate Properties

I For each t ∈ R YN(t) converges in distribution to∫
R A(t, µ)ΦL(dµ) =

∫
R g(t, t − u)dL(u).

I For t1 6= t2 YN(t1) and YN(t2) are asymptotically uncorrelated.
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Locally Stationary OU type processes

Proposition (Bitter and St. (2016))
The sequence of stochastic processes {YN(t) : t ∈ R}N∈N defined by:

YN(t) =

∫ Nt

−∞
e−
∫ Nt

u
a( s

N )dsL(du), (8)

is locally stationary, if the coefficient function a : R 7→ R satisfies:
(C1) a(·) is continuous on R,
(C2) a(t) ≥ ε for some ε > 0.

The limiting kernel / transition matrix is given by:

g(t, u) = 1{u≥0}e−a(t)u and A(t, µ) =
1

a(t)− iµ.

Note: dY (t) = a(t)Y (t)dt + L(dt) has the solution
Y (t) =

∫ t
−∞ e−

∫ t

u
a(s)dsL(du).
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Wigner-Ville Spectrum

Definition
For a locally stationary process the Wigner-Ville spectrum for fixed
N ∈ N is defined as

fN(t, λ) :=
1
2π

∫ ∞
−∞

e−iλsCov
(
YN(t + s

2N ),YN(t − s
2N )
)
ds

and the (time-varying) spectral density of the process YN(t) as

f (t, λ) :=
ΣL
2π |A(t, λ)|2.
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Convergence of the Wigner-Ville Spectrum

Theorem (Bitter and St. (2016))
Let {YN(t), t ∈ R}N∈N, YN(t) =

∫
R e iµNtA0

N(Nt, µ)ΦL(dµ), be a locally
stationary sequence of stochastic processes. Assume

(i) For all t, s ∈ R ||A0
N(N(t ± s

2N ), ·)− A(t, ·)||L2(R,C)
N→∞−−−−→ 0,

(ii) A0
N and A are uniformly bounded in L2,

(iii) For all t,N, µ the derivatives of A0
N and A w.r.t. µ exist and are

uniformly bounded in L2.
Then the Wigner-Ville spectrum tends pointwise for each t ∈ R in mean
square to the time-varying spectral density:∫

R
|fN(t, λ)− f (t, λ)|2dλ N→∞−−−−→ 0.
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