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@ The SRT is due to Garsia and Lamperti (1963), for renewal processes,
and Williamson (1968) and Erickson (1970) for random walks. It
states that when oo € (1/2,1)
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must hold, and there are examples with xF(x)p(x) —+ 0

e Sufficient conditions, based on the behaviour of the ratio xp(x)/F(x)
have been given in RAD (1997), Vatutin and Topchii (2013), and Chi
(2014+), but there is no known NASC for the SRT with oo < 1/2.

@ Using Gnedenko's local limit theorem it is straightforward to show
that

S Im o F) D PS=x) = o
n>1/F(éx)

so we are left to prove that 3, _; (5, P(Sn = x) is asymptotically
neglible, (a.n.), i.e.

lim lim sup xF(x) Z P(S, = x) =0.

0—0 X—00 —
n>1/F(6x)
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we put Z; = max,<, X, then consider
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We write A(+) for a continous interpolant of 1/F(-), and a is its
inverse, so that a, is a norming sequence for S,,.
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@ Using Gnedenko's local limit theorem again we get
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o THEOREM Suppose a € (0, 3] . Then the SRT holds iff /(6, x) is
asymptotically neglible.
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so h(d, x) is also a.n.
@ In this argument, if we took A = 0, we would apparently get a
problem when 7 is integer valued. e.g

o0

if = 1/2,Z:n/a,1 % m?/am

m

But this doesn’t matter, because for positive summands there is a
"small deviations” bound for
P(S, = x) when x/a, is small.
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Sufficiency

@ We need the following local limit results, which also hold in the rw
case;

BOUND 1 Given any v > 0, 3Cp, such that, for all n and x,

F(x)/7
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@ We also have

P{S, = x,Z1>~x}<n Z p(z)P(Sp-1 = x — z)

zZ>yX
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and taking v = 1 we get BOUND 2
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This improves the bound from the LLT because nF(x) — 0 when
X/an — 00.

Their proof is based on a result of A.V.Nagaev 1979 for the finite
variance case.

To illustrate how these bounds help, suppose 7 € [2,3) and consider
Po == P(S, = x,Z1 < x/2).

Here we use the first bound with v = 1/2 to get

X A(0x)
lim sup —— P
X—)Eo X) ; 0
— A(x)
cxF(x)? 2
< lim su —
B X—)Eo A(X) ; an
3
< lim sup XA(0x) < g3l
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@ Then a small calculation shows that 2'14(5)() P> is also a.n., and this
proves the theorem for 1/3 < o < 1/2.
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@ This suggests splitting (S, = x) by considering Z; and Z» and using
the fact that

P(Zy = y1,Z> = yo) < n°P(X1 = y1, X2 = o)

to give us the extra power of n.

@ This works....
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@ But "large jumps” now have to mean "large jumps towards x". This
makes things much more complicated.

@ So for example the NASC when « € (1/4,1/3) is that h(d, x) is a.n.,
where
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@ As before, the assumption that /1(d, x) is a.n. implies that the part of
this with y; > 0 is also a.n., but NOT
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@ You can guess the form of /x(d, x), the quantity appropriate when
k = kq :=[n—1].

@ But there is a further complication for integer values of 7. e.g. when
a = 1/2 the appropriate quantity is

L(3,x) := Z p(x —y) Z aﬂ'
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Questions

@ Why is it necessary to consider exactly k, big jumps?
@ What about the RW case with p = 07

@ Do the results extend to Lévy processes?



