The Strong Renewal Theorem via local large deviations

Francesco Caravenna (Milan) and Ron Doney (Manchester)

• This talk is about an old problem, which I will state in the context of an integer valued aperiodic random walk, $\mathbf{S} = (S_n, n \ge 0)$ which is in $D(\alpha, \rho)$ with $0 < \alpha < 1$ and $\rho > 0$.

- This talk is about an old problem, which I will state in the context of an integer valued aperiodic random walk, $S = (S_n, n \ge 0)$ which is in $D(\alpha, \rho)$ with $0 < \alpha < 1$ and $\rho > 0$.
- We write $S_0 = 0$, $S_n = \sum_{1}^{n} X_r$, the X's being i.i.d., with mass function p and distribution function F.

- This talk is about an old problem, which I will state in the context of an integer valued aperiodic random walk, $\mathbf{S} = (S_n, n \ge 0)$ which is in $D(\alpha, \rho)$ with $0 < \alpha < 1$ and $\rho > 0$.
- We write $S_0 = 0$, $S_n = \sum_{1}^{n} X_r$, the X's being i.i.d., with mass function p and distribution function F.
- We also write ϕ for the density of the limiting stable law, $\overline{F}(x) = P(X > x)$ and $\eta = 1/\alpha$. Put

$$g(x) := \sum_{1}^{\infty} P(S_n = x)$$

- This talk is about an old problem, which I will state in the context of an integer valued aperiodic random walk, $\mathbf{S} = (S_n, n \ge 0)$ which is in $D(\alpha, \rho)$ with $0 < \alpha < 1$ and $\rho > 0$.
- We write $S_0 = 0$, $S_n = \sum_{1}^{n} X_r$, the X's being i.i.d., with mass function p and distribution function F.
- We also write ϕ for the density of the limiting stable law, $\overline{F}(x) = P(X > x)$ and $\eta = 1/\alpha$. Put

$$g(x) := \sum_{1}^{\infty} P(S_n = x)$$

• The SRT is due to Garsia and Lamperti (1963), for renewal processes, and Williamson (1968) and Erickson (1970) for random walks. It states that when $\alpha \in (1/2, 1)$

$$x\overline{F}(x)g(x) \to c_{\alpha,\rho} = rac{\int_0^\infty y^{-lpha}\phi(y)dy}{\Gamma(lpha)}.$$

• It cannot hold for all cases when $\alpha \leq 1/2$, since

$$x\overline{F}(x)\sum_{1}^{n_0}P(S_n=x)\to 0$$

must hold, and there are examples with $x\overline{F}(x)p(x) \nrightarrow 0$

• It cannot hold for all cases when $\alpha \leq 1/2$, since

$$x\overline{F}(x)\sum_{1}^{n_0}P(S_n=x)\to 0$$

must hold, and there are examples with $x\overline{F}(x)p(x) \rightarrow 0$

• Sufficient conditions, based on the behaviour of the ratio $xp(x)/\overline{F}(x)$ have been given in RAD (1997), Vatutin and Topchii (2013), and Chi (2014+), but there is no known NASC for the SRT with $\alpha \leq 1/2$.

• It cannot hold for all cases when $\alpha \leq 1/2$, since

$$x\overline{F}(x)\sum_{1}^{n_0}P(S_n=x)\to 0$$

must hold, and there are examples with $x\overline{F}(x)p(x) \rightarrow 0$

- Sufficient conditions, based on the behaviour of the ratio $xp(x)/\overline{F}(x)$ have been given in RAD (1997), Vatutin and Topchii (2013), and Chi (2014+), but there is no known NASC for the SRT with $\alpha \leq 1/2$.
- Using Gnedenko's local limit theorem it is straightforward to show that

$$\lim_{\delta\to 0}\lim_{x\to\infty} x\overline{F}(x)\sum_{n>1/\overline{F}(\delta x)}P(S_n=x)=c_{\alpha,\rho},$$

so we are left to prove that $\sum_{n>1/\overline{F}(\delta x)} P(S_n = x)$ is asymptotically neglible, (a.n.), i.e.

$$\lim_{\delta \to 0} \limsup_{x \to \infty} x \overline{F}(x) \sum_{n > 1/\overline{F}(\delta x)} P(S_n = x) = 0.$$

Renewal processes

 Our approach is based on large deviations, so with 0 < λ < C fixed, we put Z₁ = max_{r<n} X_r, then consider

$$E_0 = (x - Z_1 \in [\lambda a_n, Ca_n]).$$

We write $A(\cdot)$ for a continous interpolant of $1/\overline{F}(\cdot)$, and *a* is its inverse, so that a_n is a norming sequence for S_n .

Renewal processes

 Our approach is based on large deviations, so with 0 < λ < C fixed, we put Z₁ = max_{r<n} X_r, then consider

$$E_0 = (x - Z_1 \in [\lambda a_n, Ca_n]).$$

We write $A(\cdot)$ for a continous interpolant of $1/\overline{F}(\cdot)$, and *a* is its inverse, so that a_n is a norming sequence for S_n .

• Using Gnedenko's local limit theorem again we get

$$P(S_n = x, E_0) \approx n \sum_{\lambda a_n}^{Ca_n} p(x - y) P(S_{n-1} = y)$$
$$\approx \frac{n}{a_n} \sum_{\lambda a_n}^{Ca_n} p(x - y),$$

so that

$$\sum_{1}^{A(\delta x)} P(S_n = x, E_0) \approx \sum_{1}^{A(\delta x)} \frac{n}{a_n} \sum_{\lambda a_n}^{Ca_n} p(x - y)$$
$$\approx \sum_{1}^{C\delta x} p(x - y) \sum_{A(y/C)}^{A(y/\lambda)} \frac{n}{a_n} \approx \sum_{1}^{C\delta x} p(x - y) \frac{A(x)^2}{x}$$
$$: = I(C\delta, x)$$

$$\sum_{1}^{A(\delta x)} P(S_n = x, E_0) \approx \sum_{1}^{A(\delta x)} \frac{n}{a_n} \sum_{\lambda a_n}^{Ca_n} p(x - y)$$
$$\approx \sum_{1}^{C\delta x} p(x - y) \sum_{A(y/C)}^{A(y/\lambda)} \frac{n}{a_n} \approx \sum_{1}^{C\delta x} p(x - y) \frac{A(x)^2}{x}$$
$$: = I(C\delta, x)$$

in all cases.

• We could also consider "2 big jumps", and we would get a bound involving

$$I_2(\delta, x) := \sum_{1}^{C\delta x} p(x - y_1) \sum_{1}^{\eta y_1} p(y_1 - y_2) \frac{A(y_2)^3}{y_2}.$$

But in fact

$$\sum_{1}^{A(\delta x)} P(S_n = x, E_0) \approx \sum_{1}^{A(\delta x)} \frac{n}{a_n} \sum_{\lambda a_n}^{Ca_n} p(x - y)$$
$$\approx \sum_{1}^{C\delta x} p(x - y) \sum_{A(y/C)}^{A(y/\lambda)} \frac{n}{a_n} \approx \sum_{1}^{C\delta x} p(x - y) \frac{A(x)^2}{x}$$
$$: = I(C\delta, x)$$

in all cases.

• We could also consider "2 big jumps", and we would get a bound involving

$$I_2(\delta, x) := \sum_{1}^{C\delta x} p(x - y_1) \sum_{1}^{\eta y_1} p(y_1 - y_2) \frac{A(y_2)^3}{y_2}.$$

But in fact

• THEOREM Suppose $\alpha \in (0, \frac{1}{2}]$. Then the SRT holds iff $I(\delta, x)$ is asymptotically neglible.

• The point is that this condition implies that

$$\sum_{1}^{\eta y_1} p(y_1 - y_2) \frac{A(y_2)^3}{y_2} \le c A(y_1) \cdot \frac{A(y_1)}{y_1},$$

so $I_2(\delta, x)$ is also a.n.

The point is that this condition implies that

$$\sum_{1}^{\eta y_1} p(y_1 - y_2) \frac{A(y_2)^3}{y_2} \le cA(y_1) \cdot \frac{A(y_1)}{y_1},$$

so $I_2(\delta, x)$ is also a.n.

 In this argument, if we took λ = 0, we would apparently get a problem when η is integer valued. e.g

if
$$\alpha = 1/2, \sum_{m=1}^{\infty} n/a_n \nsim m^2/a_m$$

But this doesn't matter, because for positive summands there is a "small deviations" bound for $P(S_n = x)$ when x/a_n is small.

Sufficiency

We need the following local limit results, which also hold in the rw case;

BOUND 1 Given any $\gamma > 0$, $\exists C_0$, such that, for all *n* and *x*,

$$P\{S_n = x, Z_1 \leq \gamma x\} \leq \frac{C_0\{n\overline{F}(x)\}^{1/\gamma}}{a_n}.$$

Sufficiency

We need the following local limit results, which also hold in the rw case;

BOUND 1 Given any $\gamma > 0$, $\exists C_0$, such that, for all *n* and *x*,

$$P\{S_n = x, Z_1 \leq \gamma x\} \leq \frac{C_0 \{n\overline{F}(x)\}^{1/\gamma}}{a_n}.$$

• We also have

$$P\{S_n = x, Z_1 > \gamma x\} \le n \sum_{z > \gamma x} p(z) P(S_{n-1} = x - z)$$
$$\le \frac{cn\overline{F}(\gamma x)}{2},$$

an

Sufficiency

We need the following local limit results, which also hold in the rw case;

BOUND 1 Given any $\gamma > 0$, $\exists C_0$, such that, for all *n* and *x*,

$$P\{S_n = x, Z_1 \leq \gamma x\} \leq \frac{C_0 \{n\overline{F}(x)\}^{1/\gamma}}{a_n}.$$

We also have

$$P\{S_n = x, Z_1 > \gamma x\} \le n \sum_{z > \gamma x} p(z) P(S_{n-1} = x - z)$$
$$\le \frac{cn\overline{F}(\gamma x)}{a_n},$$

and taking $\gamma=1$ we get <code>BOUND 2</code>

$$P\{S_n=x\}\leq C_0\frac{n\overline{F}(x)}{a_n}.$$

• This improves the bound from the LLT because $n\overline{F}(x) \to 0$ when $x/a_n \to \infty$.

- This improves the bound from the LLT because $n\overline{F}(x) \to 0$ when $x/a_n \to \infty$.
- Their proof is based on a result of A.V.Nagaev 1979 for the finite variance case.

- This improves the bound from the LLT because $n\overline{F}(x) \to 0$ when $x/a_n \to \infty$.
- Their proof is based on a result of A.V.Nagaev 1979 for the finite variance case.
- To illustrate how these bounds help, suppose $\eta \in [2,3)$ and consider $P_0 := P(S_n = x, Z_1 \le x/2).$

- This improves the bound from the LLT because $n\overline{F}(x) \to 0$ when $x/a_n \to \infty$.
- Their proof is based on a result of A.V.Nagaev 1979 for the finite variance case.
- To illustrate how these bounds help, suppose $\eta \in [2,3)$ and consider $P_0 := P(S_n = x, Z_1 \le x/2).$
- \bullet Here we use the first bound with $\gamma=1/2$ to get

$$\begin{split} &\lim \sup_{x \to \infty} \frac{x}{A(x)} \sum_{1}^{A(\delta x)} P_0 \\ \leq &\lim \sup_{x \to \infty} \frac{c x \overline{F}(x)^2}{A(x)} \sum_{1}^{A(\delta x)} \frac{n^2}{a_n} \\ \leq &\lim \sup_{x \to \infty} \frac{c x A(\delta x)^3}{A(x)^3 a(A(\delta x))} \leq \delta^{3\alpha - 1}. \end{split}$$

• Next, consider

$$P_2 := P(S_n = x, x/2 < Z_1 \le x - Ca_n)$$

$$\leq n \sum_{Ca_n}^{x/2} p(x-z) P(S_{n-1} = z)$$

$$\leq \frac{cn^2}{a_n} \sum_{Ca_n}^{x/2} p(x-z) \overline{F}(z)$$

by bound 2.

Next, consider

$$P_2 := P(S_n = x, x/2 < Z_1 \le x - Ca_n)$$

$$\leq n \sum_{Ca_n}^{x/2} p(x - z) P(S_{n-1} = z)$$

$$\leq \frac{cn^2}{a_n} \sum_{Ca_n}^{x/2} p(x - z) \overline{F}(z)$$

by bound 2.

• Then a small calculation shows that $\sum_{1}^{A(\delta x)} P_2$ is also a.n., and this proves the theorem for $1/3 < \alpha \le 1/2$.

• The crucial fact here is that

$$\sum_{1}^{m} n^2/a_n \backsim \frac{cm^3}{a_m}$$

• The crucial fact here is that

$$\sum_{1}^{m} n^2/a_n \backsim \frac{cm^3}{a_m}$$

• But if $1/4 < \alpha \leq 1/3$ then

$$\sum_{1}^{\infty} n^3/a_n \backsim \frac{cm^4}{a_m}.$$

• The crucial fact here is that

$$\sum_{1}^{m} n^2/a_n \backsim \frac{cm^3}{a_m}$$

• But if $1/4 < \alpha \le 1/3$ then

$$\sum_{1}^{\infty} n^3/a_n \backsim \frac{cm^4}{a_m}.$$

• This suggests splitting $(S_n = x)$ by considering Z_1 and Z_2 and using the fact that

$$P(Z_1 = y_1, Z_2 = y_2) \le n^2 P(X_1 = y_1, X_2 = y_2)$$

to give us the extra power of n.

• The crucial fact here is that

$$\sum_{1}^{m} n^2/a_n \backsim \frac{cm^3}{a_m}$$

• But if $1/4 < \alpha \le 1/3$ then

$$\sum_{1}^{\infty} n^3/a_n \backsim \frac{cm^4}{a_m}.$$

• This suggests splitting (S_n = x) by considering Z₁ and Z₂ and using the fact that

$$P(Z_1 = y_1, Z_2 = y_2) \le n^2 P(X_1 = y_1, X_2 = y_2)$$

to give us the extra power of n.

• This works....

At first, it looks as if we need only a slight modification of the renewal process results, because by again considering the value of Z_1 we can easily get:

If $\alpha \in (1/3, 1/2)$ the SRT holds iff

$$l_1(\delta,x) := \sum_{|y| \le \delta x} p(x-y) \frac{A(x)^2}{x}$$
 is a.n.

At first, it looks as if we need only a slight modification of the renewal process results, because by again considering the value of Z_1 we can easily get:

If $\alpha \in (1/3, 1/2)$ the SRT holds iff

$$I_1(\delta, x) := \sum_{|y| \le \delta x} p(x-y) \frac{A(x)^2}{x}$$
 is a.n.

• But "large jumps" now have to mean "large jumps towards x". This makes things much more complicated.

At first, it looks as if we need only a slight modification of the renewal process results, because by again considering the value of Z_1 we can easily get:

If $\alpha \in (1/3, 1/2)$ the SRT holds iff

$$I_1(\delta, x) := \sum_{|y| \le \delta x} p(x-y) \frac{A(x)^2}{x}$$
 is a.n.

- But "large jumps" now have to mean "large jumps towards x". This makes things much more complicated.
- So for example the NASC when $\alpha \in (1/4, 1/3)$ is that $I_2(\delta, x)$ is a.n., where

$$I_2(\delta, x) := \sum_{|y_1| \le \delta x} p(x - y_1) \sum_{|y_2| \le \eta |y_1|} p(y_1 - y_2) \frac{A(y_2)^3}{|y_2|}.$$

At first, it looks as if we need only a slight modification of the renewal process results, because by again considering the value of Z_1 we can easily get:

If $\alpha \in (1/3, 1/2)$ the SRT holds iff

$$I_1(\delta, x) := \sum_{|y| \le \delta x} p(x-y) \frac{A(x)^2}{x}$$
 is a.n.

- But "large jumps" now have to mean "large jumps towards x". This makes things much more complicated.
- So for example the NASC when $\alpha \in (1/4, 1/3)$ is that $I_2(\delta, x)$ is a.n., where

$$I_2(\delta, x) := \sum_{|y_1| \le \delta x} p(x - y_1) \sum_{|y_2| \le \eta |y_1|} p(y_1 - y_2) \frac{A(y_2)^3}{|y_2|}.$$

As before, the assumption that *l*₁(δ, x) is a.n. implies that the part of this with y₁ > 0 is also a.n., but **NOT**

$$\sum_{y_1\in [-\delta x,0)} p(x-y_1) \sum_{|y_2|\leq \eta |y_1|} p(y_1-y_2) \frac{A(y_2)^3}{|y_2|}.$$

$$\sum_{y_1\in [-\delta x,0)} p(x-y_1) \sum_{|y_2|\leq \eta|y_1|} p(y_1-y_2) \frac{A(y_2)^3}{|y_2|}.$$

• When $lpha \in (1/5, 1/4)$ the NASC is that $I_3(\delta, x)$ is a.n., where

$$J_3(\delta,x) := \sum_{|y_1| \le \delta x} p(x-y_1) \sum_{|y_2| \le \eta |y_1|} p(y_1-y_2) \sum_{|y_3| \le \eta |y_2|} p(y_2-y_3) \frac{\mathcal{A}(y_3)^*}{|y_3|} \, .$$

$$\sum_{y_1\in [-\delta x,0)} p(x-y_1) \sum_{|y_2|\leq \eta|y_1|} p(y_1-y_2) \frac{A(y_2)^3}{|y_2|}.$$

• When $lpha \in (1/5, 1/4)$ the NASC is that $I_3(\delta, x)$ is a.n., where

$$J_{3}(\delta, x) := \sum_{|y_{1}| \leq \delta x} p(x-y_{1}) \sum_{|y_{2}| \leq \eta |y_{1}|} p(y_{1}-y_{2}) \sum_{|y_{3}| \leq \eta |y_{2}|} p(y_{2}-y_{3}) \frac{A(y_{3})^{*}}{|y_{3}|}$$

• You can guess the form of $I_k(\delta, x)$, the quantity appropriate when $k = k_\alpha := [\eta - 1]$.

$$\sum_{y_1\in [-\delta x,0)} p(x-y_1) \sum_{|y_2|\leq \eta|y_1|} p(y_1-y_2) \frac{A(y_2)^3}{|y_2|}.$$

• When $lpha \in (1/5, 1/4)$ the NASC is that $I_3(\delta, x)$ is a.n., where

$$\mathcal{H}_3(\delta,x) := \sum_{|y_1| \le \delta x} p(x-y_1) \sum_{|y_2| \le \eta |y_1|} p(y_1-y_2) \sum_{|y_3| \le \eta |y_2|} p(y_2-y_3) \frac{\mathcal{A}(y_3)^*}{|y_3|}.$$

- You can guess the form of $I_k(\delta, x)$, the quantity appropriate when $k = k_\alpha := [\eta 1]$.
- But there is a further complication for integer values of η . e.g. when $\alpha = 1/2$ the appropriate quantity is

$$\widetilde{l}_1(\delta, x) := \sum_{|y| \le \delta x} p(x-y) \sum_{m=A(|y|)}^{A(\delta x)} \frac{m}{a_m}.$$

Questions

• Why is it necessary to consider exactly k_{α} big jumps?

Questions

- Why is it necessary to consider exactly k_{α} big jumps?
- What about the RW case with $\rho = 0$?

Questions

- Why is it necessary to consider exactly k_{α} big jumps?
- What about the RW case with $\rho = 0$?
- Do the results extend to Lévy processes?