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Introduction

This talk is about an old problem, which I will state in the context of
an integer valued aperiodic random walk, S = (Sn, n ≥ 0) which is in
D(α, ρ) with 0 < α < 1 and ρ > 0 .

We write S0 = 0,Sn =
∑n

1 Xr , the X ′s being i.i.d., with mass
function p and distribution function F .

We also write φ for the density of the limiting stable law,
F (x) = P(X > x)and η = 1/α. Put

g(x) :=
∞∑
1

P(Sn = x)

The SRT is due to Garsia and Lamperti (1963), for renewal processes,
and Williamson (1968) and Erickson (1970) for random walks. It
states that when α ∈ (1/2, 1)

xF (x)g(x)→ cα,ρ =

∫∞
0 y−αφ(y)dy

Γ(α)
.
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It cannot hold for all cases when α ≤ 1/2, since

xF (x)

n0∑
1

P(Sn = x)→ 0

must hold, and there are examples with xF (x)p(x) 9 0

Sufficient conditions, based on the behaviour of the ratio xp(x)/F (x)
have been given in RAD (1997), Vatutin and Topchii (2013), and Chi
(2014+), but there is no known NASC for the SRT with α ≤ 1/2.

Using Gnedenko’s local limit theorem it is straightforward to show
that

lim
δ→0

lim
x→∞

xF (x)
∑

n>1/F (δx)

P(Sn = x) = cα,ρ,

so we are left to prove that
∑

n>1/F (δx) P(Sn = x) is asymptotically

neglible, (a.n.), i.e.

lim
δ→0

lim sup
x→∞

xF (x)
∑

n>1/F (δx)

P(Sn = x) = 0.
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Renewal processes

Our approach is based on large deviations, so with 0 < λ < C fixed,
we put Z1 = maxr≤n Xr , then consider

E0 = (x − Z1 ∈ [λan,Can]).

We write A(·) for a continous interpolant of 1/F (·), and a is its
inverse, so that an is a norming sequence for Sn.

Using Gnedenko’s local limit theorem again we get

P(Sn = x ,E0) ≈ n
Can∑
λan

p(x − y)P(Sn−1 = y)

≈ n

an

Can∑
λan

p(x − y),

so that
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A(δx)∑
1

P(Sn = x ,E0) ≈
A(δx)∑

1

n

an

Can∑
λan

p(x − y)

≈
Cδx∑
1

p(x − y)

A(y/λ)∑
A(y/C)

n

an
≈

Cδx∑
1

p(x − y)
A(x)2

x

: = I (Cδ, x)

in all cases.

We could also consider ”2 big jumps”, and we would get a bound
involving

I2(δ, x) :=
Cδx∑
1

p(x − y1)

ηy1∑
1

p(y1 − y2)
A(y2)3

y2
.

But in fact

THEOREM Suppose α ∈ (0, 12 ] . Then the SRT holds iff I (δ, x) is
asymptotically neglible.
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The point is that this condition implies that

ηy1∑
1

p(y1 − y2)
A(y2)3

y2
≤ cA(y1) · A(y1)

y1
,

so I2(δ, x) is also a.n.

In this argument, if we took λ = 0, we would apparently get a
problem when η is integer valued. e.g

if α = 1/2,
∞∑
m

n/an � m2/am

But this doesn’t matter, because for positive summands there is a
”small deviations” bound for
P(Sn = x) when x/an is small.
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Sufficiency

We need the following local limit results, which also hold in the rw
case;
BOUND 1 Given any γ > 0, ∃C0, such that, for all n and x ,

P{Sn = x ,Z1 ≤ γx} ≤
C0{nF (x)}1/γ

an
.

We also have

P{Sn = x ,Z1 > γx} ≤ n
∑
z>γx

p(z)P(Sn−1 = x − z)

≤ cnF (γx)

an
,

and taking γ = 1 we get BOUND 2

P{Sn = x} ≤ C0
nF (x)

an
.
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This improves the bound from the LLT because nF (x)→ 0 when
x/an →∞.

Their proof is based on a result of A.V.Nagaev 1979 for the finite
variance case.

To illustrate how these bounds help, suppose η ∈ [2, 3) and consider
P0 := P(Sn = x ,Z1 ≤ x/2).

Here we use the first bound with γ = 1/2 to get

lim sup
x→∞

x

A(x)

A(δx)∑
1

P0

≤ lim sup
x→∞

cxF (x)2

A(x)

A(δx)∑
1

n2

an

≤ lim sup
x→∞

cxA(δx)3

A(x)3a(A(δx))
≤ δ3α−1.
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Next, consider

P2 : = P(Sn = x , x/2 < Z1 ≤ x − Can)

≤ n

x/2∑
Can

p(x − z)P(Sn−1 = z)

≤ cn2

an

x/2∑
Can

p(x − z)F (z)

by bound 2.

Then a small calculation shows that
∑A(δx)

1 P2 is also a.n., and this
proves the theorem for 1/3 < α ≤ 1/2.
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The crucial fact here is that

m∑
1

n2/an v
cm3

am

but obviously this calculation fails for α ≤ 1/3.

But if 1/4 < α ≤ 1/3 then

∞∑
1

n3/an v
cm4

am
.

This suggests splitting (Sn = x) by considering Z1 and Z2 and using
the fact that

P(Z1 = y1,Z2 = y2) ≤ n2P(X1 = y1,X2 = y2)

to give us the extra power of n.

This works....



The crucial fact here is that

m∑
1

n2/an v
cm3

am

but obviously this calculation fails for α ≤ 1/3.

But if 1/4 < α ≤ 1/3 then

∞∑
1

n3/an v
cm4

am
.

This suggests splitting (Sn = x) by considering Z1 and Z2 and using
the fact that

P(Z1 = y1,Z2 = y2) ≤ n2P(X1 = y1,X2 = y2)

to give us the extra power of n.

This works....



The crucial fact here is that

m∑
1

n2/an v
cm3

am

but obviously this calculation fails for α ≤ 1/3.

But if 1/4 < α ≤ 1/3 then

∞∑
1

n3/an v
cm4

am
.

This suggests splitting (Sn = x) by considering Z1 and Z2 and using
the fact that

P(Z1 = y1,Z2 = y2) ≤ n2P(X1 = y1,X2 = y2)

to give us the extra power of n.

This works....



The crucial fact here is that

m∑
1

n2/an v
cm3

am

but obviously this calculation fails for α ≤ 1/3.

But if 1/4 < α ≤ 1/3 then

∞∑
1

n3/an v
cm4

am
.

This suggests splitting (Sn = x) by considering Z1 and Z2 and using
the fact that

P(Z1 = y1,Z2 = y2) ≤ n2P(X1 = y1,X2 = y2)

to give us the extra power of n.

This works....



The random walk case
At first, it looks as if we need only a slight modification of the renewal
process results, because by again considering the value of Z1 we can easily
get:
If α ∈ (1/3, 1/2) the SRT holds iff

I1(δ, x) :=
∑
|y |≤δx

p(x − y)
A(x)2

x
is a.n.

But ”large jumps” now have to mean ”large jumps towards x”. This
makes things much more complicated.

So for example the NASC when α ∈ (1/4, 1/3) is that I2(δ, x) is a.n.,
where

I2(δ, x) :=
∑
|y1|≤δx

p(x − y1)
∑

|y2|≤η|y1|

p(y1 − y2)
A(y2)3

|y2|
.

As before, the assumption that I1(δ, x) is a.n. implies that the part of
this with y1 > 0 is also a.n., but NOT
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∑
y1∈[−δx ,0)

p(x − y1)
∑

|y2|≤η|y1|

p(y1 − y2)
A(y2)3

|y2|
.

When α ∈ (1/5, 1/4) the NASC is that I3(δ, x) is a.n., where

I3(δ, x) :=
∑
|y1|≤δx

p(x−y1)
∑

|y2|≤η|y1|

p(y1−y2)
∑

|y3|≤η|y2|

p(y2−y3)
A(y3)4

|y3|
.

You can guess the form of Ik(δ, x), the quantity appropriate when
k = kα := [η − 1].

But there is a further complication for integer values of η. e.g. when
α = 1/2 the appropriate quantity is

Ĩ1(δ, x) :=
∑
|y |≤δx

p(x − y)

A(δx)∑
m=A(|y |)

m

am
.
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Questions

Why is it necessary to consider exactly kα big jumps?

What about the RW case with ρ = 0?

Do the results extend to Lévy processes?
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