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Lévy Processes @ Angers

25/07/2016

http://wwwmath.uni-muenster.de/statistik/dereich/


0 Positive self-similar Markov processes (pssMp)

Positive self-similar Markov process of index α > 0:

I strong càdlàg Markov family {Pz , z ∈ (0,∞)} on the state space [0,∞) -
0 being an absorbing cemetery state - such that the scaling property holds:

the law of (cZc−αt)t≥0 under Pz is Pcz (SP)

for all z , c > 0, where Z = (Zt)t≥0 denotes the canonical process.

Lamperti representation: (Lamperti ’72)

I ∃ a Lévy process ξ = (ξt)t≥0 (possibly killed with cemetery state −∞),
such that, under Pz for z > 0,

Zt = exp(ξA(t)), t ≥ 0,

where ξ is started in log(z) and

A(·) =
(∫ ·

0

exp(αξs)ds
)−1

.

Note: To avoid technicalities we assume that the Lévy process ξ is nonlattice!
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0 Two regimes

Two regimes: Let T0 be first hitting time of zero of Z .

(R) Pz(T0 <∞) = 1 for all z > 0 ⇔ ξ drifts to −∞ or is killed

(T) Pz(T0 <∞) = 0 for all z > 0 ⇔ ξ drifts to ∞ or oscillates

Example: Squared-Bessel processes of dimension δ ∈ R

dZt = 2
√
ZtdBt + δdt, t ≤ T0,

self-similar of index 1 with corresponding Lévy process

ξt = 2Wt + (δ − 2)t.

I δ < 2 ⇒ squared-Bessel process hits zero

I δ ≥ 2 ⇒ squared-Bessel process does not hit zero
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0 Extensions?

Two questions:

(i) How to extend a pssMp after hitting 0 in the recurrent regime (R) with
an instantaneous entrance from zero?

(ii) How to start a pssMp from the origin in the transient regime (T)?
Are there extensions {Pz , z ≥ 0} with the Feller property so that in
particular P0 := w- limz↓0 Pz exists in the Skorokhod topology?

People: Barczy, Bertoin, Caballero, Chaumont, Döring, Fitzsimmons,
Kyprianou, Pardo, Rivero, Savov, ...



0 Extensions for pssMp

Theorem (R): (Fitzsimmons ’06, Rivero ’07)
In the recurrent regime the following statements are equivalent:

I ∃ unique recurrent self-similar Markov extension

I ∃ a self similar excursion measure with summable excursion length

I ∃ λ ∈ (0, α) such that
E[eλξ1 ] = 1.

Theorem (T): (Chaumont, Kyprianou, Pardo, Rivero ’12, Bertoin, Savov ’11)
In the recurrent regime the following statements are equivalent:

I The weak limit P0 = limx↓0 Px exists.

I ξ has stationary overshoots meaning that the weak limit of overshoots

O := w- limx↑∞(ξτx − x) exists,

where τx is the first time ξ enters [x ,∞).

Note: As a consequence of Doney, Maller ’02 the latter property can be
characterised in terms of the Lévy triplet of ξ (integral conditions).
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0 Real self-similar Markov processes

Aim: Similar results for transient regime for real self-similar Markov processes!

I What does convergence of overshoots mean in that context?

I Can one characterise the regime where overshoot distributions exist
similar as in the classical case?

Real self-similar Markov process of index α > 0:

I strong càdlàg Markov family {Pz , z ∈ R\{0}} on the state space R - 0
being an absorbing cemetery state - such that the scaling property holds:

the law of (cZc−αt)t≥0 under Pz is Pcz (SP)

for all z 6= 0 and c > 0, where Z = (Zt)t≥0 denotes the canonical process.

The analogue of the Lamperti representation is based on Markov additive
processes!



0 Markov additive processes

MAP: A càdlàg Markov process (ξ, J) is a MAP if J is a Markov chain with
finite state space E and if there exist independent iid sequences

I (ξi,n)n∈N0 of Lévy processes for i ∈ E

I (∆n
i,j)n∈N of real random variables for i , j ∈ E ,

such that, if Tn is the nth jump-time of J, one has

ξt =


ξTn + ξ

JTn ,n

t−Tn
: t ∈ (Tn,Tn+1 ∧ k), n ∈ N0

ξTn− + ∆n
JTn−,JTn

, : t = Tn < k, n ∈ N
ξt = −∞ : t ≥ k

where the time k is the first time one of the Lévy processes is killed.

Overshoots: A MAP is said to have stationary overshoots if the limit

w- lima→∞ P((ξτ+a − a, Jτ+a ) ∈ · |(ξ0, J0) = (0, i))

exists and does not depend on i . Here: τ+a first entrance time into [a,∞)× E .
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0 Lamperti representation

Lamperti-Kiu representation: (Kiu ’80, Chaumont et al ’13)

I ∃ a Markov additive process (ξ, J) = (ξt , Jt)t≥0 on R× {±1} (possibly
killed with cemetery state −∞), such that, under Pz for z 6= 0,

Zt = exp(ξA(t))JA(t), t ≥ 0,

where (ξ, J) is started in (log(|z |), sgn(z)) and A(·) is as before.

Assume: ξ is nonlattice and J is irreducible

Two regimes: Let T0 be the first hitting time of zero of Z .

(R) Pz(T0 <∞) = 1 for all z > 0 ⇔ (ξ, J) drifts to −∞ or is killed

(T) Pz(T0 <∞) = 0 for all z > 0 ⇔ (ξ, J) drifts to ∞ or oscillates

Focus: transient regime !
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0 Main result

Theorem: (D, Döring, Kyprianou ’15+) In the transient regime:

∃ Feller extension {Pz : z ∈ R} ⇐⇒ the MAP has stationary overshoots.

More explicitly: If the MAP has stationary overshoots, then there exists an
extension {Pz : z ∈ R} that is a strong càdlàg Markov family such that:

1. Under P0 the process leaves 0 instantaneously (continuously).

2. The corresponding transition semigroup (Pt) on R has the Feller property.

3. The family {Pz : z ∈ R} is self similar.

Furthermore, P0 is the unique distribution satisfying one of the properties (1)
or (2).

Rem:

I The distribution P0 admits a potential theoretic interpretation.

I A characterisation of stationary overshoots is valid in the spirit of Doney
and Maller.
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Theorem: (D, Döring, Kyprianou ’15+) In the transient regime:

∃ Feller extension {Pz : z ∈ R} ⇐⇒ the MAP has stationary overshoots.

More explicitly: If the MAP has stationary overshoots, then there exists an
extension {Pz : z ∈ R} that is a strong càdlàg Markov family such that:
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0 Roadmap

Roadmap:

1. Definition of a candidate P0

2. Verification of
P0 = w- limx→0 Px

3. Characterisation of stationary overshoots

ad 1: based on potential theory (Kuznestov measure, quasi-process)

ad 2: based on a technical lemma and fluctuation theory (potential measure of
ascending ladder hight process)

ad 3: similar criterion as in Doney, Maller ’02

We defer the discussion of one and start with steps two and three.

If time permits, we will state the theorem in the language of potential theory.
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Verification of P0 = w- limx→0 Px



I Convergence lemma

Q: Once we defined a law P0, how can we verify that it is the right one?

Convergence lemma: Let {Pz : z ∈ R\{0}} be a strong càdlàg Markov family
and P0 a law on the Skorokhod space. Suppose

(1a) limε→0 lim sup|z|→0 E
z [Tε] = 0

(1b) w- limz→0 Pz(ZTε ∈ ·) =: µε(·) exists for all ε > 0

(1c) R\{0} 3 z 7→ Pz is continuous (weak topology on Skorokhod space)

and

(2a) P0-almost surely, Z0 = 0 and Zt 6= 0 for all t > 0

(2b) P0((ZTε+t)t≥0 ∈ ·) = Pµε(·) for every ε > 0

Then the mapping
R 3 z 7→ Pz

is continuous in the weak topology on the Skorokhod space.
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I Verification of properties (1a)-(1c)

(1a) limε→0 lim sup|z|→0 E
z [Tε] = 0

The proof is based on fluctuation theory which can be developed for MAPs in
analogy to the Lévy case.

Using the Lamperti representation one obtains

Ez [Tε] ≤ εα
∑

j,k∈{±1}

πj

πsgn(z)

∑
l∈{±1}

∫
[0,∞)

e−αy Û+
j,l(dy)

∫
[0,log(ε/|z|)]

e−α(log(ε/|z|)−z)U+
k,l(dz)

in terms of the potential measure U+
k,l (Û+

j,l) of the ascending (descending)
Markov additive ladder height process of ξ.

The integrals are finite and the key renewal theorem (for MAPs) yields
convergence of the latter integral.
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I Verification of properties (1a)-(1c)

(1b) w- limz→0 Pz(ZTε ∈ ·) =: µε(·) exists for all ε > 0

By the Lamperti-Kiu representation this is equivalent to the MAP having
stationary overshoots.

(1c) R\{0} 3 z 7→ Pz is continuous (weak topology on Skorokhod space)

Consequence of the Lamperti-Kiu representation.
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Criterion for stationary overshoots



II Criterion for stationary overshoots

Q: When does a MAP (ξ, J) has stationary overshoots?

Theorem: (D, Döring, Kyprianou ’15+) The MAP has stationary overshoots,
if ξ1 has finite absolute moment and either of the following holds:

(i) (ξ, J) drifts to +∞
(ii) (ξ, J) oscillates and∫ ∞

1

x Π([x ,∞))

1 +
∫ x

0

∫∞
y

Π((−∞,−z]) dz dy
dx <∞, (TO)

where Π is the measure

Π =
∑
i∈E

Πi +
∑
i→j

pos. trans. of J

L(∆i,j),

and Πi denotes the Lévy measure of ξi,n from the Lamperti representation.



II Idea of the proof

One proves the following statements:

It suffices to characterise the case where (ξ, J) has tight overshoots (thanks to
fluctuation theory).

The overshoots are tight if and only if the overshoots of (ξσn )n∈N are tight with
(σn) denoting the return times of J to a fixed state i .

Case (i) is equivalent to (ξσn ) converging to ∞ and case (ii) is the case where
(ξσn ) is a martingale.

In Case (ii), Doney, Maller ’02 yields that (ξσn ) has tight (stationary)
overshoots, if the integral condition (TO) is satisfied for Π being the
distribution of an increment of the random walk.

A close inspection of the property (TO) shows that it is quite robust: it is
preserved by L2-perturbations and behaves well for summands as they appear in
one cycle from state i to i .
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Construction of P0



III Kuznetsov measure

We use results from potential theory. To explain these let

I (Pt) be a Feller semigroup on a locally compact space E

I W the set of all functions w : R→ E ∪ {∂} (∂ denoting a cemetery state)
such that there exist α(w) < β(w) with

I w is E -valued and càdlàg on (α(w), β(w))
I w |(α(w),β(w))c ≡ ∂

Kuznetsov measure: For a family of σ-finite measures (ηt)t∈R on E with
ηsPt−s ≤ ηt for s < t (entrance rule) there exists a σ-finite measure Qη on W
such that for all t0 < . . . < tn

Qη(α(Y ) <t0,Yt0 ∈ dx0, . . . ,Ytn ∈ dxn, tn < β(Y ))

= ηt0(dx0)Pt1−t0(x0, dx1) . . .Ptn−tn−1(xn−1, dxn).

Application: For the MAP an invariant measure is given by m(dx , i) = dx πi

and the Kuznetsov measure for ηt ≡ m is denoted by QMAP. One has

α = −∞, QMAP-a.e.
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III Kuznetsov measure
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III Lamperti-like time changes

Random time change: Suppose that h : E → (0,∞) is locally bounded and
measurable and set for w ∈W with

∫
(α,u]

h(ws) ds <∞ for a u > α

At =
(∫

(α,·]
h(Ys) ds

)−1

.

Time changed semigroup: (P̃t) given by

P̃t f (x) = Ex [f (YAt )],

where paths (Yt)t≥0 are interpreted as elements of W0 = {α = 0} ⊂W .



III Construction of P0 via Kaspi ’88

Thm: (Kaspi ’88) Suppose that m is a (Pt)-invariant measure and that∫
(α,t]

h(Ys) ds <∞, Qm-a.e.

There is a Kuznetsov measure Q̃ supported on W0 = {α = 0} such that

Q̃( · ∩ {β > t}) = Qm(π(Y ) ∈ · , 0 < At ≤ 1),

where

π(Y )t =

{
YAt , t > 0,

∂, t ≤ 0.

Application: Choose h(x , i) = eαx and apply the theorem onto the MAP
(restrict attention to the case where the MAP drifts to infinity)

I integral finite? (a QMAP-process backwards in time is adjoint MAP)

I Y 1
t → −∞ as t ↓ −∞, QMAP-a.e. ⇒ same true for t ↓ 0, Q̃-a.e.

I Q̃ is a finite measure and its normalisation is P0 (tightness of overshoots)
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III The bigger picture

Assume that the (Pt)-Markov process is transient

There is a one-to-one correspondence between the following objects

1. excessive measures, i.e., measures m with mPt ≤ m for all t ≥ 0

2. shift invariant Kuznetsov measures Q
3. quasi-processes, i.e., certain measures P on the σ-field G containing all

shift invariant measurable sets of W

1⇔2: The link is given by choosing ηt ≡ m in the construction of the
Kuznetsov measure.

2⇔3: In terms of a stationary time S : W → R, i.e., S(θtw) = S(w)− t, one
has

P(A) = Q(Y ∈ A, S ∈ [0, 1)).

Further

Q(A) =

∫ ∫ ∞
−∞

1lA(θS(w)+t(w)) dt dP(w).

3⇒1:

m(A) =

∫ ∫
(α(w),β(w))

1lA(wt) dt dP(w).
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III Kaspi’s result in the language of potential theory

Q: How to recover Kaspi’s result with the concepts from the previous slide?

For an excessive measure m we denote by Pm the corresponding quasi-process.

Doing the time change we end up with a quasi-process P̃m̃ with
m̃(dx) = h(x)m(dx). Kaspi’s assumption gives P̃m̃(α = −∞) = 0.

The Kuznetsov measure Q̃ = P̃m̃ ◦ (θα)−1 agrees with the respective measure
in Kaspi’s theorem.
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IV Conclusion/summary

I The correspondence between self-similar extensions and stationary
overshoots prevails in the transient R-valued case.

I There is a characterization of stationary overshoots for MAPs similar to
the one in Doney and Maller.

I The measure P0 is a normalised quasi-process with birth time set to zero.

I Under the assumption of stationary overshoots, all sequences (xn) with
limit zero are Cauchy in the Martin topology and the limit point is
extremal and corresponds to a finite quasi-process supported on
{α > −∞}.

I In the recurrent case one obtains analogous statement holds with the limit
corresponding to the excursion measure.

Ref:

Real self-similar processes started from the origin. D, Döring, Kyprianou ’16+
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