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Introduction

Consider a completed, filtered probability space
(Ω,F , (Ft, t ≥ 0), (IPϕ,x, (ϕ, x) ∈ E × R)), where E is a locally compact space
with a countable base, ∆ is some isolated state and E ∪ {∆} endowed with its
Borel σ-field.

Definition (Neveu (1961), Çinlar (1972))

A Markov additive process (MAP) is an E × R-valued strong Markov process
{((J, ξ), IPϕ,x} with cemetery state (∆,∞), lifetime ζ, such that

(i) the paths of (J, ξ) are right continuous on [0,∞), have left-limits and are
quasi-left continuous on [0, ζ);

(ii) J is a strong Markov process;

(iii) for any (ϕ, z) ∈ E × R, t, s ≥ 0 and f : E × R→ R measurable and
positive

IPϕ,z (f(Jt+s, ξt+s − ξt), t+ s < ζ|Ft) = IPJt,0 (f(Js, ξs), s < ζ) 1{t<ζ}.
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Introduction

Motivation: Lamperti’s transform

Theorem (Lamperti (1972), Kiu (1980), Chaumont, Pantí R. (2013),
Kuznetsov, Kyprianou, Pardo, Watson (2012), Alili, Chaumont, Graczyk, and
Zak (2016))

Let X be a Rd valued strong Markov process having càdlàg paths, quasi-left
continuous, and that has the scaling property: there exists an α > 0 such that
for any c > 0 the process

{(cXc−αt, t ≥ 0), IPx}
Law
= {(Xt, t ≥ 0), IPcx}, x ∈ Rd .

Assume X dies at its first hitting time of 0. The process (J, ξ) defined by

Jt =
Xτ(t)

|Xτ(t)|
, ξt = log(|Xτ(t)|/|X0|), t ≥ 0,

with
τ(t) = inf{s > 0 :

∫ s

0

|Xu|−αdu > t}, t > 0,

and (J, ξ)τ(t) = (∆,∞) if τ(t) =∞, is a Sd−1 × R valued Markov additive
process.
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Introduction

What can be said about Sd−1 × R-valued MAPs?

How do we characterise the MAP who is behind a stable process or a
transformation of it?

Is there a fluctuation theory that allow us to describe the (J, ξ) from its
extrema?

If yes, can this be used to get a better understanding of stable processes?
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Introduction

Since the 70’s many prominent authors contributed to the study and
development of applications of MAPs, mainly with finite and countable state
space, but also in general: Arjas, Asmussen, Boxma, Çinlar, Grigelionis, Iscoe,
Ivanovs, Kaspi, Kella, Kyprianou, Ney, Nummelin, Maisonneuve, Palmowski,
Pistorius, Prabhu, Speed... many others.

MAPs in countable state space have applications in queueing, risk theory,
financial mathematics, self-similar Markov processes theory, statistical physics...

MAPs in more general state spaces are less popular due to its technicalities but
they are relevant at least in the study of excursions from a set, as shown by
Çinlar and Kaspi (1982), and self-similar Markov processes in Rd, and in
particular for stable processes.
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Introduction

E countable

When E is finite or countable the process J is a Markov chain that describes
the phases of the process and ξ evolves as a concatenation of independent Lévy
processes (ξi, i ∈ E) shifted by an independent sequence of r.v.
(Uni,j , (i, j) ∈ E × E,n ≥ 1).

J starts in state j, ξ moves as ξj ,

at an exponential time T1 of parameter qj , J jumps to a new position, say
k, with probability pj,k, and stays there for an exponential time of
parameter qk,

at time T1, ξ jumps from position ξT1− to position ξT1− + U1
j,k and from

there it evolves as ξk

and so on

Notice ξ has jumps coming from each Lévy process and from J. Conditionally
on J , ξ has jumps at the fixed times (Tn, n ≥ 1).
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Introduction

E finite

When E is finite, the dynamics of (J, ξ) are determined by:

the infinitesimal generator of J, say Q = (qi,j , i, j ∈ E), (qi,i = 0, i ∈ E).

the laws of (Ui,j , i, j ∈ E) say Fi,j(dy) = IP(Ui,j ∈ dy),

the characteristic exponents of (ξj , j ∈ E), say (Ψj , j ∈ E)
IE
(
exp{λξjt }

)
= exp{tΨj(λ)},

The transition semigroup of (J, ξ) is characterised through its matrix exponent
K(λ) = (Ki,j(λ), i, j ∈ E) as

F
(t)
i,j (λ) = IEi

(
exp{λξt}1{Jt=j}

)
= exp{tK(λ)}i,j , i, j ∈ E, t ≥ 0,

where

K(λ) = Q+ (Ψj(λ))diag + (qi,j (IE (exp{λUi,j})− 1))i,j∈E .

See Asmussen’s book Applied Probability and Queues.
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Some general facts

In general, conditional to the driving process J

ξ has independent increments,

ξt = At + ξft + ξct + ξdt , t ≥ 0,
where σ(ξFt , t ≥ 0), σ(ξdt , t ≥ 0) and σ(ξct , t ≥ 0) are conditionally
independent, and (J,A) and (J, ξf/c/d) are MAPS.

A is continuous additive functional of J

Y c is a Gaussian process,

Y f is a purely discontinuous process with discontinuities fixed by J,

Y d is a stochastically continuous process with independent increments and
does not jumps at the same time as J .
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Some general facts

A Lévy-Khintchine formula

Under rather general assumptions

IEϕ [exp{iλξt}|J ]

=

∏
s≤t

FλJs−,Js
Js− 6=Js

(ω)

 exp

{
iλAt −

1

2
λ2Ct.

}

× exp

{∫ t

0

dH̃s

∫
R

Π̃s(Js, dy)

(
eiλy − 1− iλy

1 + |y|2

)} (1)

where

a) for each (ϕ0, ϕ1), Fλϕ0,ϕ1
is a characteristic function in λ and is

K-measurable for fixed λ.

b) A = (At, t ≥ 0) is an additive functional of X.

c) C = (Ct, t ≥ 0) is a non-negative continuous additive functional of X.

d) for each j, Π̃s(j, dy) is a Lévy measure and it is J-measurable for fixed λ,
H is a continuous additive functional.

Can we describe (H, Π̃) for the MAP behind the stable?
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Some general facts

Lévy systems (compensation formula)

Lemma (Çinlar, (1975), after Beneviste and Jacod (1973))

There exists a continuous additive functional H and a kernel Π from E to
E × R such that for every f measurable and positive

IEj

∑
s≤t

F (Js−, Js, ξs−, ξs)1{Js− 6=Js or ξs− 6=ξs}


= IEj

(∫ t

0

dHs

∫
E×R

L(Js, dϕ, dy)F (Js, ϕ, ξs, ξs + y)

)
,

(2)

Moreover,

Π(j, dϕ, dy) = 1{ϕ=j}Π̃(j, dy) + 1{ϕ 6=j}K(j, dϕ)Fj,ϕ(dy).
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Some general facts

The Lévy kernel of the MAP associated to a Stable processes

Assume X is a rotationally invariant stable process in Rn, its Lévy measure
admits the polar representation ΠX(dy) = σ(ds) dr

|r|1+α 1{sr∈dy}, where σ is the
uniform measure on Sn−1.

Let f : R×R×Sn−1 → R be any positive measurable test function such that
f(·, 0, ·) = 0, and consider the expression ,

IE0,j

(∑
s>0

f(s, ξs − ξs−, Js − Js−)

)

= IE
0,

X0
|X0|

(∑
s>0

f

(∫ s

0

|Xu|−αdu, log (|Xs|/|Xs−|) ,
Xs
|Xs|

− Xs−
|Xs−|

))

= IE
0,

X0
|X0|

(∫ ∞
0

dv

∫
Jv+θ∈Sn−1

σ(Jv + dθ)

×
∫
x∈(−∞,∞)\{0}

dx
enx

|(ex − 1)2 − 2ex < θ, Jv > |(α+n)/2
f (v, x, θ)

)
.
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Some fluctuation theory

Fluctuation Theory

The fluctuation theory of MAPs describes the paths of (J, ξ) seen from the
past supremum (infimum) and as its counterpart for Lévy processes has many
important applications.

Lemma (Kaspi (1992))

Let It = infs≤t ξs, t ≥ 0, and the reflected process Ut := ξt − It, t ≥ 0. The
process ((Jt, ξt, Ut), t ≥ 0) is a standard Markov process.

Proof.
Same proof as in the Lévy case.
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Some fluctuation theory

Duality

(Duality) Assume there is a measure π s.t. {(J, ξ)t, t ≥ 0} is in weak duality with
{(J,−ξ)t, t ≥ 0} w.r.t. dxπ(dθ), i.e.∫

E×R
π(dϕ)dxf(ϕ, x) IEϕ,x (g(Jt, ξt))

=

∫
E×R

π(dϕ)dxg(ϕ, x) IEϕ,x (f(Jt,−ξt))

Lemma
Let t > 0 fixed. The process {(J(t−s)−, ξt− − ξ(t−s)−), 0 ≤ s ≤ t} under Pπ,0
has the same law as {(J, ξ)s, 0 ≤ s ≤ t} under Pπ,0.
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Some fluctuation theory

Lemma (Kaspi (1982), Palmowski et al. (2011), Ivanovs (2015) Kyprianou et
al. (2016))

Assume that the duality condition is satisfied and that E is finite. Let eq an
independent exponential r.v. of parameter q, Gq = sup{s < eq : ξs = ξ

s
}.

(i) The pairs of random variables (Gq, ξeq
) and (eq −Gq, ξeq − ξeq ) are

conditionally independent given (JGq−, JGq ).

(ii) The conditional laws are characterised through the q-potentials of the
excursion measures from the supremum and the infimum, respectively.

Can this result be extended to non-countable case? What else can be said?
Yes, by means of the theory of exit systems of Maissoneuve.
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Some fluctuation theory

Definition
The downward ladder set

M = {t : (Jt, ξt, ξt − inf
s≤t

ξs) ∈ E × R×{0}}.

R = inf{t > 0 : t ∈M cl}.

The set of regular points

F̃ = {j ∈ E : IPj,x,0(R = 0) = 1, ∀x ∈ R}.

For simplicity we often assume that F̃ = E.
Albeit this assumption may easily fail the results we will describe are true in
greater generality.
Take E = {0, 1}, ξ0 a stable process and ξ1 a compound Poisson Process.
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Some fluctuation theory

Exit system for the excursions from 0 for the process reflected in the
infimum

Lemma (Maissoneuve (1982), Çinlar and Kaspi (1982), Kaspi (1983))

There exists an additive functional L, with 1-potential smaller than 1, carried
by E × R×0 and a kernel P ∗ from (E × R×R, E ×R×R) into (Ω,F) such
that

P ∗ϕ,x,y
(
1− e−R

)
≤ 1 for all (ϕ, x, y)

IE·

(∑
g∈G

ZgH ◦ θg

)
= IE·

(∫ ∞
0

dLsZsP
∗
Js,ξs,Us (H)

)
, where Z is any

positive predictable process, H any measurable and bounded functional
and G is the set of left end points of intervals that are contiguous to M.

The excursion measure N j is the image measure of P ∗j,0,0 under the mapping
that stops the path at the end of the first excursion: (J, ξ, ξ − I)·∧R.
Under N j the excursion process has the Markov property with the same
semigroup as (J, ξ) killed when it passes below zero.



16/ 28

Fluctuation theory for Markov Additive processes and applications to self-similar processes

Some fluctuation theory

Exit system for the excursions from 0 for the process reflected in the
infimum

Lemma (Maissoneuve (1982), Çinlar and Kaspi (1982), Kaspi (1983))

There exists an additive functional L, with 1-potential smaller than 1, carried
by E × R×0 and a kernel P ∗ from (E × R×R, E ×R×R) into (Ω,F) such
that

P ∗ϕ,x,y
(
1− e−R

)
≤ 1 for all (ϕ, x, y)

IE·

(∑
g∈G

ZgH ◦ θg

)
= IE·

(∫ ∞
0

dLsZsP
∗
Js,ξs,Us (H)

)
, where Z is any

positive predictable process, H any measurable and bounded functional
and G is the set of left end points of intervals that are contiguous to M.

The excursion measure N j is the image measure of P ∗j,0,0 under the mapping
that stops the path at the end of the first excursion: (J, ξ, ξ − I)·∧R.

Under N j the excursion process has the Markov property with the same
semigroup as (J, ξ) killed when it passes below zero.



16/ 28

Fluctuation theory for Markov Additive processes and applications to self-similar processes

Some fluctuation theory

Exit system for the excursions from 0 for the process reflected in the
infimum

Lemma (Maissoneuve (1982), Çinlar and Kaspi (1982), Kaspi (1983))

There exists an additive functional L, with 1-potential smaller than 1, carried
by E × R×0 and a kernel P ∗ from (E × R×R, E ×R×R) into (Ω,F) such
that

P ∗ϕ,x,y
(
1− e−R

)
≤ 1 for all (ϕ, x, y)

IE·

(∑
g∈G

ZgH ◦ θg

)
= IE·

(∫ ∞
0

dLsZsP
∗
Js,ξs,Us (H)

)
, where Z is any

positive predictable process, H any measurable and bounded functional
and G is the set of left end points of intervals that are contiguous to M.

The excursion measure N j is the image measure of P ∗j,0,0 under the mapping
that stops the path at the end of the first excursion: (J, ξ, ξ − I)·∧R.
Under N j the excursion process has the Markov property with the same
semigroup as (J, ξ) killed when it passes below zero.



17/ 28

Fluctuation theory for Markov Additive processes and applications to self-similar processes

Some fluctuation theory

The downward ladder process

Lemma (Kaspi (1982))

Let τ t = inf{s > 0 : Ls > t}, t > 0, be the inverse local time process,
Ht = −ξτt . The downward ladder process{

(Jτt , τ t, Ht), t ≥ 0
}
,

is Markov additive process with values in E ∪ {∆} × [0,∞]× [0,∞]. It is
characterised through its Laplace transform: ∃ `, a : E → [0,∞), bounded s.t.

IEj (exp{−λτ t − βHt}|J)

= exp

{
−λ
∫ t

0

`(Jτu)du− β
∫ t

0

a(Jτs)ds−
∫ t

0

duNJτu
(1− exp{−λζ − βξζ})

}
,

for all λ ≥ 0.

We have the following analogue of Vigon’s formula

N j

(
f(Jζ−, ξζ−, ζ, Jζ , ξζ)1{ξζ− 6=ξζ}

)
= N j

(∫ ζ

0

dHt

∫
[−∞,0)

Π(Jt, dφ, dy)f(Jt, ξt, t, φ, ξt + y)1{y+ξt<0}

)
.



18/ 28

Fluctuation theory for Markov Additive processes and applications to self-similar processes

Downward ladder potential measure

Theorem (Time of maximum and last exit formula: I)

Let U−j (dϕ, dr, dz) be the potential measure of the downward ladder process

U−j (dϕ, dr, dz) = IEj
(∫ ∞

0

ds1{Jτs∈dϕ,τs∈dr,Hs∈dz,τs<∞}

)
,

ϕ ∈ E, r, z ∈ [0,∞), and Gt = sup{s < t : ξs = ξ
s
}.

(i) For any f : E × R→ R+ measurable

IEj,x
(
f(Jt, ξt)1{Gt<t}

)
=

∫
E×[0,t]×R+

U−j (dϕ, dr, dz)Nϕ

(
f(Jt−r, x− z + ξt−r)1{t−r<ζ}

)
(ii) Let τ−0 = inf{t > 0 : ξt < 0}.

IEj,x
(
f(Jt, ξt)1{Gt<t}1{t<τ−0 }

)
=

∫
E×[0,t]×[0,x)

U−j (dϕ, dr, dz)Nϕ

(
f(Jt−r, x− z + ξt−r)1{t−r<ζ}

)



19/ 28

Fluctuation theory for Markov Additive processes and applications to self-similar processes

Downward ladder potential measure

Idea of Proof

Let t > 0, Gt = sup{s < t : ξs = ξ
s
}.

IEj,x (f(Jt, ξt)) = IEj
(
f(Jt, x+ ξt)1{t∈M}

)
+ IEj

(
f(Jt, x+ ξ

Gt
+ ξt − ξ

Gt
)1{Gt<t}

)
= T ct f(j)

+ IEj

 ∑
s∈G∩[0,t)

1{R>t−s}f(Jt−s, x+ ξ
s

+ ξs − ξ
s
) ◦ θs


= T ct f(j) + IEj

(∫
[0,t]

dLsNJs

(
f(Jt−s, x+ ξs + ξ̃t−s)1{t−s<ζ}

))

= T ct f(j) +

∫
E×[0,t]×R+

U−j (dϕ, dr, dz)Nϕ

(
f(Jt−r, x− z + ξt−r)1{t−r<ζ}

)
with U−j (dϕ, dr, dz) = IEj

(∫ ∞
0

dt1{Jτs∈dϕ,τs∈dr,Hs∈dz,τs<∞}

)
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Downward ladder potential measure

Theorem (Time of maximum and last exit formula: II)

The potential measure of the upward ladder process

U−j (dϕ, dr, dz) = IEj
(∫ ∞

0

ds1{Jτs∈dϕ,τs∈dr,Hs∈dz,τs<∞}

)
,

ϕ ∈ E, r, z ∈ [0,∞), satisfies

(ii) For each j ∈ E there exists a kernel V j(t, dϕ, dz) from R+ to E ×R+ s.t.
U−j (dϕ, ds, dz)`(ϕ) = V j(s, dϕ, dz)ds

(iii) If ` ≡ 0 then for all j ∈ E, and t > 0, IPj,x (t ∈M) = 0.

(iv) For any f : E × R→ R+ measurable, we have for almost all t > 0,

IEj,x
(
f(Jt, ξt)1{Gt=t}

)
=

∫
E×[0,∞)

U−j (dϕ, ds, dz)

ds
|{s=t}`(ϕ)f(ϕ, t, x− z)

=

∫
E×[0,∞)

V j(t, dϕ, dz)`(ϕ)f(ϕ, t, x− z)

(v) IEj,x
(
f(Jt, ξt)1{Gt=t}1{t<τ−0 }

)
=

∫
E×[0,x)

V j(t, dϕ, dz)`(ϕ)f(ϕ, t, x−z)

This is an extension of a result by Çinlar (1976) and Maissoneuve (1977).
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Downward ladder potential measure

Theorem
Assume that the duality condition is satisfied. Let eq an independent
exponential r.v. of parameter λ, Gλ = sup{s < eλ : ξs = ξ

s
}. The pairs of

random variables (Gλ, ξeλ
) and (eλ−Gλ, ξeλ − ξeλ) are conditionally

independent given (JGλ−, JGλ).

IEπ

(
F (Geλ

, inf
s≤Geλ

ξs)|JGeλ
− = j

)
=:W+

λ F (j)

=
`(j)F (0, 0) +N j

(∫ ζ
0
due−λuF (u, εu)1{u<ζ}

)
`(j) + 1

λ
N j (1− exp{−λζ})

,

IEπ

(
H(eλ−Geλ

, ξeλ − inf
s≤Geλ

ξs)|JGeλ
= j

)
=:W−λ H(j)

=
`(j)H(0, 0) + λN j

(∫ ζ
0
due−λuH(u, εu)1{u<ζ}

)
`(j) + 1

λ
N j (1− exp{−λζ})

.



22/ 28

Fluctuation theory for Markov Additive processes and applications to self-similar processes

Downward ladder potential measure

We confirmed the well known fact that the downward ladder measure is a key
element in the fluctuation theory, is it possible to obtain this measure or its
marginals explicitly?

(i) Determine and invert the Laplace transform

(ii) For stable processes, via some explicit identities where the measure plays a
roll.

Asymptotic behaviour of the marginals of the downward ladder measure is
possible thanks to the Markov renewal theorem.
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Proposition
The potential densities are given by the following. α ∈ (0, 1): for x ≥ 0,

u+(x)

∝
(Γ(1−αρ̂)

Γ(αρ)
(1− e−x)αρ−1(1 + e−x)αρ̂ Γ(1−αρ̂)

Γ(αρ)
(1− e−x)αρ(1 + e−x)αρ̂−1

Γ(1−αρ)
Γ(αρ̂)

(1− e−x)αρ̂(1 + e−x)αρ−1 Γ(1−αρ)
Γ(αρ̂)

(1− e−x)αρ̂−1(1 + e−x)αρ

)
and

u−(x)

∝
( Γ(1−αρ)

Γ(αρ̂)
(ex − 1)αρ̂−1(ex + 1)αρ

sin(απρ̂)Γ(1−αρ)
sin(απρ)Γ(αρ̂)

(ex − 1)αρ̂(ex + 1)αρ−1

sin(απρ)Γ(1−αρ̂)
sin(απρ̂)Γ(αρ)

(ex − 1)αρ(ex + 1)αρ̂−1 Γ(1−αρ̂)
Γ(αρ)

(ex − 1)αρ−1(ex + 1)αρ̂

)
.

While for α = 1 and symmetric: for x ≥ 0,

u+(x) = u−(x) ∝
(
(1− e−x)−1/2(1 + e−x)1/2 (1− e−x)1/2(1 + e−x)−1/2

(1− e−x)1/2(1 + e−x)−1/2 (1− e−x)−1/2(1 + e−x)1/2

)
.

The constants are determined by requiring that the matrices
∫

[0,∞)
dxu+/−(x)

be stochastic.
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Proposition
α ∈ (1, 2): for x ≥ 0,

u+(x)

∝
α− 1

2

(
(1− e−x)αρ−1(1 + e−x)αρ̂ (1− e−x)αρ(1 + e−x)αρ̂−1

(1− e−x)αρ̂(1 + e−x)αρ−1 (1− e−x)αρ̂−1(1 + e−x)αρ

)
−

(α− 1)2

2(λ+ α− 1)

(
(1− e−x)αρ−1(1 + e−x)αρ̂−1 (1− e−x)αρ−1(1 + e−x)αρ̂−1

(1− e−x)αρ̂−1(1 + e−x)αρ−1 (1− e−x)αρ̂−1(1 + e−x)αρ−1

)
and

u−(x)

∝
α− 1

2

(
(ex − 1)αρ̂−1(ex + 1)αρ

sin(απρ̂)
sin(απρ)

(ex − 1)αρ(ex + 1)αρ−1

sin(απρ)
sin(απρ̂)

(ex − 1)αρ(ex + 1)αρ̂−1 (ex − 1)αρ−1(ex + 1)αρ̂

)

−
(α− 1)2

2(λ+ α− 1)

(
(ex − 1)αρ̂−1(ex + 1)αρ−1 sin(απρ̂)

sin(απρ)
(ex − 1)αρ̂−1(ex + 1)αρ−1

sin(απρ)
sin(απρ̂)

(ex − 1)αρ−1(ex + 1)αρ̂−1 (ex − 1)αρ−1(ex + 1)αρ̂−1

)
.
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Lemma (Two key identities)

Recall Gq = sup{s < eq : ξs = ξ
s
}, and τ−0 = inf{t > 0 : ξt < 0}.

IEj,x
(
f(JGq )

)
=

∫
E×[0,∞)×[0,∞)

U−j (dϕ, dr, dz)e−qrf(ϕ)
[
q`(ϕ) +Nϕ(1− exp{−qζ})

]

IEj,x
(
f(JGq )1{eq<τ−0 }

)
=

∫
E×[0,∞)×[0,x)

U−j (dϕ, dr, dz)e−qrf(ϕ)
[
q`(ϕ) +Nϕ(1− exp{−qζ})

]
Letting q → 0, for all j ∈ E and x

1 =

∫
E×[0,∞)×[0,∞)

U−j (dϕ, dr, dz)Nϕ(ζ =∞)

IEj,x
(
τ−0 =∞, f(JG∞)

)
=

∫
E×[0,∞)×[0,x)

U−j (dϕ, dr, dz)f(ϕ)Nϕ(ζ =∞)
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Let Xm be the point of closest reach of the origin. We observe that

U−1,1(0, x)N1(ζ =∞) = IP1,x(τ−0 =∞; JG∞ = 1) = IPex(Xm > 1),

with

U−1,1(0, x) =

∫
E×[0,∞)×[0,x)

U−1 (dϕ, dr, dz)1{ϕ=1}

Lemma (Kyrpianou, Pardo and Watson (2014))

Assume α ∈ (0, 1). Let τ (−1,1) := inf{t ≥ 0 : |Xt| < 1}. We have that, for
x > 1,

IPx(τ (−1,1) =∞) = Φ(x),

Φ(x) =
Γ(1− αρ)

Γ(αρ̂)Γ(1− α)

∫ (x−1)/(x+1)

0

tαρ̂−1(1− t)−α dt.
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Furthermore, the invariance under translation and the scaling property implies

IPx(τ (−u,v) =∞) = Φ

(
2x+ u− v
u+ v

)
Let m+ and m− be the times when X is at the closest point to the origin on
the positive and negative side of the origin, respectively. Thus

IPx(|Xm− | > u;Xm+ > v) = IPx(τ (−u,v) =∞) = Φ

(
2x+ u− v
u+ v

)
,

The point of closest reach of the origin Xm has a law

IPx(Xm ∈ dz)
dz

= − ∂

∂v
IP(|Xm− | > z;Xm+ > v)|v=z.

From there we easily determine the value of

U−1,1(x)N1(ζ =∞) = IPx,1(τ−0 =∞; JG∞ = 1) = IPex(Xm > 1)
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Thank you for your attention

Enjoy the 8th International
Conference on Lévy Processes
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