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One-dimensional random walk with i.i.d. increments.

Let {Sn}n≥1 be a random walk,

S0 = 0, Sn = X1 + · · ·+Xn, n ≥ 1,

where {Xn}n≥1 are i.i.d. random variables.

Let τx be the exit time from the positive half-line,

τx = inf{n ≥ 1 : x+ Sn ≤ 0},

where x ≥ 0.



Wiener-Hopf factorisation.

For x = 0, using time-reversibility of random walk and dual stopping time one obtains

1−E[uτ0 ] = exp

{
−
∞∑
n=1

un

n
P(Sn ≤ 0)

}

If P(Sn ≤ 0)→ ρ then, applying Tauberian theorem, one can derive asymptotics for

P(τ0 > n).

Assume that E[X1] = 0 and E[X2
1 ] = 1. Then ρ = 1/2 and

P(τ0 > n) ∼
√

2

π

E[−Sτ0 ]√
n

, n→∞.

For x > 0 one has

P(τx > n) ∼
√

2

π
V (x)

1√
n
,

where V (x) = E[−Sτx ]. V (x) can also be described as the renewal function of the

decreasing ladder height process.



Conditioned random walk.

Using Wiener-Hopf techniques one can also find the following weak limit

lim
n→∞

P(Sn > v
√
n | τx > n), v ≥ 0.

In fact, one can show that the linearly interpolated random walk

s(t) := Sn + (t− n)Xn+1, t ∈ [n, n+ 1],

after rescaling sn(t) := s(nt)/
√
n converges to the Brownian meander, see

Iglehart, 1974 and Bolthausen, 1976.



Summary of the Wiener-Hopf factorisation for random walks.

• Powerful analytical method that allows to analyse exit times from half-lines and related

quantities.

– Transforms of distributions of exit times, overshoots. They can be inverted explicitly

in some cases or numerically.

– Exact asymptotics and asymptotic expansions for exit times .

– Functional limit theorems for conditioned processes.

• This method is specific to one-dimensional homogeneous random walks. It is not of

much help for the analysis of

– exit times for random walks in higher dimensions,

– exit times for random walks with non-identically distributed increments,

– exit times for for Markov chains;



Invariance principles for exit times - version 1.0: large starting points.

Now we will consider (for illustration purposes) the above one-dimensional random walk

and discuss how to deal with exit times without the Wiener-Hopf method.

Consider the growing starting point x
√
n. Then, we can make use of the

Donsker-Prokhorov invariance principle:

sn(t) :=
s(nt)√
n
→Wt, t ∈ [0, 1], n→∞.

This gives immediately

P(τx
√
n > n) = P(min

k≤n
Sk > −x

√
n)→ P( min

0≤s≤1
Ws > −x).



Invariance principles for exit times - version 1.0: repulsion

But we want to start from a fixed point x. In this case invariance principle is too inaccurate,

so let’s wait until random walk x+ Sn is far away from 0. Let

νn := min{k ≥ 1 : x+ Sk ≥ n1/2−ε}.

Stopping time νn is sufficiently small, so

P(νn > n1−ε, τx > n1−ε) ≤ Ce−cn
ε

.

Then

P(τx > n) = P(τx > n, νn ≤ n1−ε) +O(e−cn
ε

)

≈ E[P(τ̃Sνn > n− n1−ε), τx > νn] +O(e−cn
ε

).

Now, Sνn is of order n1/2−ε, which is sufficiently large but is still much smaller than n1/2.



Invariance principles for exit times - version 1.0: KMT-coupling

Hence, functional limit theorem is not accurate enough and we need to apply more

accurate KMT coupling.

P

(
sup
u≤n
|s(u)−Wu| ≥ n1/2−γ

)
≤ Cn−ε̃.

Since Sνn is of order n1/2−ε we obtain

P(τ̃Sνn > n− n1−ε) = (1 + o(1))P(τ bmSνn > n− n1−ε).

Now recall, that for the standard Brownian motion and x = o(
√
n),

P(τ bmx > n) ∼
√

2

π

x√
n
, n→∞

Therefore,

P(τ̃Sνn > n− n1−ε) ∼
√

2

π

Sνn√
n
, n→∞.



Invariance principles for exit times - version 1.0: fixed starting point

Then,

P(τx > n) ∼ E[P(τ̃Sνn > n− n1−ε), τx > νn]

∼
√

2

π

E[Sνn , τx > νn]√
n

.

We are done once we show that

E[Sνn , τx > νn]→ V (x).

As SnI(τx > n) is a submartingale it is sufficient to show that

sup
n

E[Sνn , τx > νn] <∞.

This can be done via recursive estimates.



Invariance principles for exit times - version 1.0: key steps

1. We found asymptotics for exit times in the Brownian motion.

2. For the random walk we showed repulsion from boundaries.

3. We constructed function V (x) = −E[Sτx ]

4. We used repulsion from boundaries to replace the random walks with the Brownian

motion.

5. KMT coupling was used to control the error of replacement of the random walk with the

Brownian motion.

These steps allowed us to transform the results for the exactly solvable exit times for the

standard Brownian motion to the approximations for the exit times of random walks.



Invariance principles for exit times - version 1.0: multidimensional models

• Random walks in Weyl chambers, Denisov and Wachtel, 2010.

• Random walks in cones, Denisov and Wachtel, 2015.

• Integrated random walks, Denisov and Wachtel, 2015.

• Conditional limit theorems for products of random matrices,

Grama, Le Page and Peigne, 2014

The main difficulty: In order to apply the above methodology one needs to prove

functional limit theorem with rate of convergence (construct a coupling).



Invariance principles for exit times - version 2.0: random walks with non-i.i.d. increments

Now we consider

Sn = X1 + · · ·+Xn,

where Xn are independent but not identically distributed. Let g = (gn)n≥1 be a

real-valued sequence and let

τx := min{n ≥ 1 : x+ Sn ≤ 0},

Tg := min{n ≥ 1 : Sn ≤ −gn}.

We are interested in finding asymptotics for

P(Tg > n), n→∞.



Invariance principles for exit times - version 2.0: main assumptions

We assume that Xk are centred

E[Xk] = 0, k ≥ 1

and have finite variances

σ2
k := E[X2

k ] ∈ (0,∞).

Let

B2
n :=

n∑
k=1

σ2
k, n ≥ 1,

and assume that the Lindeberg condition holds, i.e.

(1) L2
n(ε) :=

1

B2
n

n∑
k=1

E[X2
k ; |Xk| > εBn]→ 0, for every ε > 0.



Invariance principles for exit times - version 2.0: functional CLT

Interpolate the random walk as follows,

s(t) = Sk +Xk+1
t−B2

k

σ2
k+1

, t ∈ [B2
k, B

2
k+1], k ≥ 1

and let

sn(t) :=
s(tB2

n)

B2
n

.

Then, under the Lindeberg condition (1),

sn(t)
d→Wt, n→∞,

in C[0, 1] endowed with the supremum norm.



Invariance principles for exit times - version 2.0: asymptotics far away from the boundary

For x = uBn, we can apply the functional limit theorem as above

P(τx > n) = P(x+ min
k≤n

Sk > 0) = P(u+ min
k≤n

Sk/Bn > 0)

→ P(u+ min
t≤1

Wt > 0) = P(τ bmu > 1) = P(τ bmx > Bn).

We can slightly improve by considering x = unBn, where un → 0 sufficiently slowly:

P(τxn > n) ∼ P(τ bmxn > Bn) ∼
√

2

π

xn
Bn

.



Invariance principles for exit times - version 2.0: main result

Theorem 1.

Let P(Tg > n) > 0, n ≥ 1 and

gn = o(Bn).

If the Lindeberg condition (1) holds then

P(Tg > n) ∼
√

2

π

Ug(B
2
n)

Bn
,

where Ug is a positive, slowly varying function.

Furthermore sn(t) conditioned on {Tg > n} converges weakly in C[0, 1] towards the

Brownian meander. In particular,

P

(
Sn
Bn

> v | Tg > n

)
→ e−v

2/2, v ≥ 0.



Weighted random walks

Aurzada and Baumgarten, 2011 considered weighted random walks

S(n) =
n∑
k=1

σ(k)ξk,

where ξk are i.i.d. with mean E[ξk] = 0 and V ar(ξk) <∞. Under the assumption

E[eλ|ξ1|] <∞ for some λ > 0 they showed that if σ(n) = np+o(1) then

P(τ0 > n) ∼ n−p+1/2+o(1), n→∞.

To obtain this result they used the KMT coupling.

Our Theorem 1 states that the same asymptotic behaviour takes places for all weighted

random walks with fine variances and for all boundaries gn = o(Bn).



Invariance principles for exit times - version 2.0: key changes

Lindeberg condition implies weak convergence in C[0,1] of sn(t) to Wt.

Hence, we can use results of Strassen, 1965 and Skorokhod, 1977 to construct the

following coupling: one can construct Sn and Brownian motion Wn(t) on a common

probability space so that

P( max
0≤t≤B2

n

|s(t)−Wn(t)| > πnBn) ≤ πn,

where πn → 0.

Instead νn in version 1.0 we use

ν(h) := inf{k ≥ 1 : Sk > gk + h} and νm := min(ν(Bm),m).

For every sequence πn we can find m(n) such that random walk and Brownian motion

are suficiently close after reaching the level Bm(n). This means that we may apply

coupling at time νm(n) if Sνm(n)
≥ Bn(m).



Asymptotic behaviour of Ug: question

Asymptotic behaviour of Ug: question

Can we strengthen the statement of Theorem 1 and say that Ug(B
2
n)→ C ∈ (0,∞)?

The answer is NO.

Novikov, 1983 has shown that for random walks with i.i.d. increments and increasing

boundaries gn one has

P(Tg > n) ∼ Cg√
n
⇔

∞∑
n=1

gn
n3/2

<∞.



Convergence of Ug .

Theorem 2. Let the assumptions of Theorem 1 hold and in addition ḡ := supn gn <∞.

Then the expectation E[−STg ] is well defined and

lim
x→∞

Ug(x) = E[−STg ] ∈ (0,∞].

In particular, if E[−STg ] is finite we have the following exact asymptotics

P(Tg > n) ∼
−E[STg ]

Bn
, n→∞.



Necessary condition for E[−Sτx ] <∞.

Assume now that gn ≡ −x. Is limn→∞ Ug(n) ∈ (0,∞)?

The answer is again NO and the following necessary condition should hold.

If E[−Sτx ] is finite then∑
n=1

1

Bn
E[−Xn;−Xn > εBn] <∞ for each ε > 0.



Necessary condition for E[−Sτx ] <∞: example.

Let Xn be a symmetric random variable with four values:

P(Xn = ±
√
n) =

pn
2
, P(Xn = ±an) =

1− pn
2

,

where

pn :=
1

n log(2 + n)
and an :=

√
1− npn
1− pn

.

Clearly, EXn = 0 and EX2
n = 1. Therefore, Bn =

√
n for this sequence of random

variables.



This sequence satisfies the Lindeberg condition.

For ε = 1/2 we have

∞∑
k=2

1

Bk
E[−Xk;−Xk > Bk/2] =

∞∑
k=2

1√
k

√
kpk =

∞∑
k=2

1

k log(2 + k)
=∞.

This implies that E[−STg ] =∞ and, consequently,

√
nP(τ0 > n)→∞.



Sufficient conditions for E[−Sτx ] <∞.

Theorem 3. Assume that the uniform Lindeberg condition holds. Assume also that

∞∑
k=1

log1+γ B2
k

Bk
E

[
−Xk+1;−Xk+1 >

Bk

log2+2γ B2
k

]
<∞

and

gn > −a
Bn

log2+2γ Bn

for some γ > 1 and some a > 1. Then,

lim
n→∞

Ug(n) = E[−STg ] <∞.



Possible generalisations.

• Asymptotically stable random walks with non-identically distributed increments.

• One-dimensional Markov chains.

• One-dimensional martingales, stationary sequences.

• Markov chains in cones.


