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Absorption problem for random walks

Random walk in R1

Let X1,X2, . . . ,Xn be independent, identically distributed ran-
dom variables with a symmetric density f :

f (−t) = f (t).

The partial sums Sk = X1 + . . . + Xk form a random walk.

Theorem (Sparre Andersen, 1949)

The probability that such random walk stays positive by the
time n is given by

P[S1 > 0, . . . , Sn > 0] =
(2n − 1)!!

(2n)!!
=

(2n − 1)!!

2nn!
.

This formula is distribution-free!

This is a combinatorial result.
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Random walk in Rd

Let the increments X1, . . . ,Xn be i.i.d. random vectors in Rd

with a centrally symmetric density f (t) = f (−t).

Problem

Compute the absorption probability

P[0 ∈ conv{S1, S2, . . . , Sn}].

Note that for d = 1,

P[0 /∈ conv{S1, S2, . . . , Sn}] = 2P[S1 > 0, . . . , Sn > 0].

References

Transition from non-absorption to absorption in high dimension
d as the number of steps n increases:
Eldan (2014), Tikhomirov and Youssef (2014, 2015).
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Who cares?

Generalization of the persistence problem to Rd .

Connection with integral geometry via the conic Crofton
formula.

Wendel’s formula (1962) for absorption probability for i.i.d.
random vectors with centrally symmetric density.

Theorem (V. and D. Zaporozhets, 2015) for d = 2

For random walks with centr. symmetric density of increments,

P[0 /∈ conv{S1, S2, . . . , Sn}] =
n∑

k=1

(2n − 2k − 1)!!

k(2n − 2k)!!
.

Conjecture (V. and D. Zaporozhets, 2015)

The absorption probability is distribution free in Rd .

Our method does not work for d ≥ 3 but it allows to find the
asymptotics of absorption probabilities for d = 2.4



Main result

Theorem (Kabluchko, V., and Zaporozhets 2015+)

For random walks with centr. symmetric density of increments,

P[0 ∈ conv(S1, . . . , Sn)] =
2

2nn!
(bn(d + 1) + bn(d + 3) + . . .),

where bn(k) are the coefficients of the polynomial

(x + 1)(x + 3) . . . (x + 2n − 1) =
∞∑
k=0

bn(k)xk .

Connections

Combinatorics: bn(k) are known as the b-analogues of the
Stirling numbers of the first kind.

Geometry: bn(k) are the conic intrinsic volumes of Weyl
chambers of type Bn.
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Asymptotics

This explicit formula is very tractable and allows to compute
the asymptotics for both fixed and increasing dimensions.

Theorem (fixed dimension d)

Under our assumptions, as n→∞,

P[0 /∈ conv{S1, . . . , Sn}] ∼
2(log n)d−1

2d−1(d − 1)!
√
πn
.

Critical number of steps in high dimension

Consider a high dimension d . It is clear that

If n is “small”, then non-absorption has high probability.

If n is “large”, then absorption has high probability.

There is a critical value n = n(d) for which the absorption
probability is ≈ 1/2.
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Previous results

Eldan (2014): ec1d/ log d ≤ critical n ≤ ec2d log d .

Tikhomirov and Youssef (2014, 2015):

ec1d ≤ critical n ≤ ec2d .

These results are only for simple and Gaussian random walks.

Theorem (CLT in high dimensions, K.–V.–Z. (2015+))

Let the dimension d = d(n) be such that for some a ∈ R,

d(n) =
1

2
log n + a

√
1

2
log n + o(

√
log n),

as n→∞. Then under our assumptions,

lim
n→∞

P[0 /∈ conv{S1, . . . , Sn}] =
1√
2π

∫ a

−∞
e−t

2/2dt.

Hence the critical number of steps is n ≈ e2d .
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Proof

Symmetric exchangeability of the increments

For every permutation σ on {1, . . . , n} and for every choice of
the signs we have

(X1, . . . ,Xn)
d
= (±Xσ(1), . . . ,±Xσ(n)).

Symmetry group Bn

The group Bn has 2nn! elements which act on Rn by

permuting the coordinates

changing the sings of any number of coordinates.

Weyl chambers of type Bn

The standard Weyl chamber of type Bn is the cone

Wn := {(x1, . . . , xn) ∈ Rn : 0 < x1 < . . . < xn}.

Any of 2nn! cones gWn, g ∈ Bn, is called a Weyl chamber.
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Probabilistic problem ⇔ Geometric problem(s)

Absorption occurs iff for some non-trivial α1, . . . , αn ≥ 0:

α1X1 + α2(X1 + X2) + . . . + αn(X1 + . . . + Xn) = 0.

Rearrange the terms:

Xn αn︸︷︷︸
β1

+Xn−1 (αn + αn−1)︸ ︷︷ ︸
β2

+ . . . + X1 (α1 + . . . + αn)︸ ︷︷ ︸
≤βn

= 0.

Thus (β1, . . . , βn) belongs to the standard Weyl chamber Wn.

On the other hand, βnX1 + βn−1X2 + . . . + β1Xn = 0 means

(β1, . . . , βn) ∈ Ker A,

where A is the d × n matrix with columns Xn, . . . ,X1.
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Random linear subspace

P[0 ∈ conv(S1, . . . , Sn)] = P[Ker A intersects Wn ]

Ker A is a random linear subspace of Rn of codimension d a.s.

Conic Crofton formula

Let L be a uniformly distributed random linear subspace of Rn

of codimension d . Then for every convex cone C ,

P[L intersects C ] = 2(νd+1(C ) + νd+3(C ) + . . .),

where νk(C ) are conic intrinsic volumes of C .

If Sk is a standard Gaussian random walk in Rd , then Ker A
d
= L.

Theorem (Klivans–Swartz (2011), K.–V.–Z. (2015+))

The conic intrinsic volumes νk(Wn) are the coefficients of the

polynomial (x+1)(x+3)...(x+2n−1)
2nn!

. That is νk(Wn) = bn(k).
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Solving the geometric problem

The Bn-invariance (symmetric exchangeability) implies that
Ker A intersects every Weyl chamber with the same probability.

Basic lemma

Let Nn,d be the number of Weyl chambers of type Bn intersected
by Ker A. Then

P[0 ∈ conv(S1, S2, . . . , Sn)] =
ENn,d

2nn!
.

Solution by the theory of hyperplane arrangements

The walls of the Weyl chambers are formed by the hyper-
planes xi = 0 and xi = ±xj , 1 ≤ i < j ≤ n.

Every subspace of codimension d in “general position” in-
tersects the same number of chambers! So Nn,d = const.
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Invariance for other symmetry groups

Symmetry group An−1

The group An−1 acts on Rn by permuting the coordinates in an
arbitrary way. The number of elements is n!. The hyperplane
x1 + . . . + xn = 0 stays invariant.

Random walk bridge

Let X1, . . . ,Xn be i.i.d. random vectors in Rd with arbitrary
density (no symmetry assumption!).

Consider the partial sums Sk = X1 + . . . + Xk .

We are interested in the random walk bridge:
S1, S2, . . . , Sn−1 conditioned on Sn = 0.
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Absorption probability for random walk bridges

Theorem (Kabluchko, V., and Zaporozhets 2015+)

P[0 ∈ conv(S1, . . . , Sn−1)|Sn = 0] =
2

n!

([
n

d + 2

]
+

[
n

d + 4

]
+ . . .

)
,

where
[
n
k

]
are the Stirling numbers of the first kind defined by

x(x + 1) . . . (x + n − 1) =
∞∑
k=1

[
n

k

]
xk .

[
n
k

]
is the number of n-permutations with exactly k cycles.[

n
k

]
is the probability that there are exactly k records in an

i.i.d. sample of size n from a continuous distribution.

Special case d = 1 (Sparre Andersen, 1953)

P[S1 > 0, . . . , Sn−1 > 0|Sn = 0] = 1/n.

16



Dn-invariance: random walks flipping the last jump

Symmetry group Dn

The group Dn acts on Rn by permuting the coordinates in an
arbitrary way and by changing the sign of an even number of
coordinates. The number of elements is 2n−1n!.

Probabilistic problem corresponding to Dn

Let X1, . . . ,Xn be independent identically distributed ran-
dom vectors in Rd with centrally symmetric density.

Consider the partial sums Sk = X1 + . . . + Xk and

S∗n = X1 + . . . + Xn−1−Xn.

We can compute the probability that conv(S1, . . . , Sn, S
∗
n )

contains 0.
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Invariance under products of symmetry groups

Type Bn1 × . . .× Bnr

Take r independent, symmetric random walks with densities in
Rd with n1, . . . , nr steps. We can compute the probability that
the joint convex hull of these random walks absorbs the origin.

Example: B r
1 = (Z/2Z)r (Wendel, 1962)

Let X1, . . . ,Xr be i.i.d. random vectors in Rd with a centrally
symmetric density. Then,

P[0 /∈ conv{Z1, . . . ,Zr}] =
1

2r−1

d−1∑
k=0

(
r − 1

k

)
.
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Removing the density assumption

All the stated results are valid for partial sums Sk of increments
whose joint distribution has density and is invariant under the
action of the corresponding group An−1,Bn,Dn or Bn1×. . .×Bnr .

Example

The existence of density is essential!

For a random walk with

P[X1 = 1] = P[X1 = −1] = 1/4,P[X1 = 0] = 1/2,

the non-absorption probability equals 1
2

of the non-
absorption probability for a walk with symmetric density.

Theorem (Kabluchko, V., Zaporozhets 2015+)

The absorption probabilities are minimal if the increments have
a joint density (and satisfy the respective assumptions).
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THANK YOU!
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