Absorption problem for multidimensional random walks

Vladislav Vysotsky

(Imperial College London and St. Petersburg Division of Steklov Institute)

Joint work with Zakhar Kabluchko (Münster) and Dmitry Zaporozhets (St. Petersburg)

July 26, 2016

Absorption problem for random walks

Random walk in \mathbb{R}^1

Let X_1, X_2, \ldots, X_n be independent, identically distributed random variables with a symmetric density f:

$$f(-t)=f(t).$$

The partial sums $S_k = X_1 + \ldots + X_k$ form a random walk.

Theorem (Sparre Andersen, 1949)

The probability that such random walk stays positive by the time n is given by

$$\mathbb{P}[S_1 > 0, \dots, S_n > 0] = \frac{(2n-1)!!}{(2n)!!} = \frac{(2n-1)!!}{2^n n!}$$

- This formula is distribution-free!
- This is a combinatorial result.

Random walk in \mathbb{R}^{d}

Let the increments X_1, \ldots, X_n be i.i.d. random vectors in \mathbb{R}^d with a centrally symmetric density f(t) = f(-t).

Problem

Compute the **absorption probability**

 $\mathbb{P}[0 \in \operatorname{conv}\{S_1, S_2, \ldots, S_n\}].$

Note that for
$$d = 1$$
,
 $\mathbb{P}[0 \notin \text{conv}\{S_1, S_2, ..., S_n\}] = 2\mathbb{P}[S_1 > 0, ..., S_n > 0].$

References

Transition from non-absorption to absorption in high dimension d as the number of steps n increases: Eldan (2014), Tikhomirov and Youssef (2014, 2015).

Who cares?

- Generalization of the persistence problem to \mathbb{R}^d .
- Connection with integral geometry via the conic Crofton formula.
- Wendel's formula (1962) for absorption probability for i.i.d. random vectors with centrally symmetric density.

Theorem (V. and D. Zaporozhets, 2015) for d = 2For random walks with centr. symmetric density of increments, $\mathbb{P}[0 \notin \operatorname{conv}\{S_1, S_2, \dots, S_n\}] = \sum_{k=1}^n \frac{(2n-2k-1)!!}{k(2n-2k)!!}.$

Conjecture (V. and D. Zaporozhets, 2015)

The absorption probability is distribution free in \mathbb{R}^d .

Our method does not work for $d \ge 3$ but it allows to find the asymptotics of absorption probabilities for d = 2.

Theorem (Kabluchko, V., and Zaporozhets 2015+)

For random walks with centr. symmetric density of increments,

$$\mathbb{P}[0 \in \operatorname{conv}(S_1, \ldots, S_n)] = \frac{2}{2^n n!} (b_n(d+1) + b_n(d+3) + \ldots),$$

where $b_n(k)$ are the coefficients of the polynomial

$$(x+1)(x+3)...(x+2n-1) = \sum_{k=0}^{\infty} b_n(k)x^k.$$

Connections

- Combinatorics: $b_n(k)$ are known as the b-analogues of the Stirling numbers of the first kind.
- Geometry: $b_n(k)$ are the **conic intrinsic volumes** of Weyl chambers of type B_n .

Asymptotics

This explicit formula is very tractable and allows to compute the asymptotics for both fixed and increasing dimensions.

Theorem (fixed dimension *d*)

Under our assumptions, as $n \to \infty$,

$$\mathbb{P}[0 \notin \operatorname{conv}\{S_1, \ldots, S_n\}] \sim \frac{2(\log n)^{d-1}}{2^{d-1}(d-1)!\sqrt{\pi n}}$$

Asymptotics

This explicit formula is very tractable and allows to compute the asymptotics for both fixed and increasing dimensions.

Theorem (fixed dimension d)

Under our assumptions, as $n \to \infty$,

$$\mathbb{P}[0 \notin \operatorname{conv}\{S_1, \ldots, S_n\}] \sim \frac{2(\log n)^{d-1}}{2^{d-1}(d-1)!\sqrt{\pi n}}$$

Critical number of steps in high dimension

Consider a **high** dimension d. It is clear that

• If *n* is "small", then non-absorption has high probability.

• If *n* is "large", then absorption has high probability.

There is a critical value n = n(d) for which the absorption probability is $\approx 1/2$.

Previous results

- Eldan (2014): $e^{c_1 d / \log d} \leq \text{critical } n \leq e^{c_2 d \log d}$.
- Tikhomirov and Youssef (2014, 2015):

$$e^{c_1 d} \leq \operatorname{critical} n \leq e^{c_2 d}.$$

These results are only for simple and Gaussian random walks.

Previous results

- Eldan (2014): $e^{c_1 d / \log d} \leq \text{critical } n \leq e^{c_2 d \log d}$.
- Tikhomirov and Youssef (2014, 2015):

$$e^{c_1d} \leq \operatorname{critical} n \leq e^{c_2d}.$$

These results are only for simple and Gaussian random walks.

Theorem (CLT in high dimensions, K.–V.–Z. (2015+))

Let the dimension d = d(n) be such that for some $a \in \mathbb{R}$,

$$d(n) = \frac{1}{2}\log n + a\sqrt{\frac{1}{2}\log n} + o(\sqrt{\log n}),$$

as $n \to \infty$. Then under our assumptions,

$$\lim_{n\to\infty}\mathbb{P}[0\notin\operatorname{conv}\{S_1,\ldots,S_n\}]=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{a}\mathrm{e}^{-t^2/2}\mathrm{dt}.$$

Hence the critical number of steps is $n \approx e^{2d}$.

Proof

Symmetric exchangeability of the increments

For every permutation σ on $\{1,\ldots,n\}$ and for every choice of the signs we have

$$(X_1,\ldots,X_n) \stackrel{d}{=} (\pm X_{\sigma(1)},\ldots,\pm X_{\sigma(n)}).$$

Symmetry group B_n

The group B_n has $2^n n!$ elements which act on \mathbb{R}^n by

- permuting the coordinates
- changing the sings of any number of coordinates.

Weyl chambers of type B_n

The standard **Weyl chamber** of type B_n is the cone

$$W_n := \{ (x_1, \ldots, x_n) \in \mathbb{R}^n \colon 0 < x_1 < \ldots < x_n \}.$$

Any of $2^n n!$ cones $gW_n, g \in B_n$, is called a Weyl chamber.

10

Probabilistic problem \Leftrightarrow Geometric problem(s)

Absorption occurs iff for some non-trivial $\alpha_1, \ldots, \alpha_n \geq 0$:

$$\alpha_1X_1 + \alpha_2(X_1 + X_2) + \ldots + \alpha_n(X_1 + \ldots + X_n) = 0.$$

Rearrange the terms:

$$X_n \underbrace{\alpha_n}_{\beta_1} + X_{n-1} \underbrace{(\alpha_n + \alpha_{n-1})}_{\beta_2} + \ldots + X_1 \underbrace{(\alpha_1 + \ldots + \alpha_n)}_{\leq \beta_n} = 0.$$

Thus $(\beta_1, \ldots, \beta_n)$ belongs to the standard Weyl chamber $\overline{W_n}$.

On the other hand, $\beta_n X_1 + \beta_{n-1} X_2 + \ldots + \beta_1 X_n = 0$ means $(\beta_1, \ldots, \beta_n) \in Ker A,$

where A is the $d \times n$ matrix with columns X_n, \ldots, X_1 .

$$\mathbb{P}[0 \in \operatorname{conv}(S_1, \ldots, S_n)] = \mathbb{P}[Ker \ A \ intersects \ \overline{W_n}]$$

Ker A is a random linear subspace of \mathbb{R}^n of codimension d a.s.

$$\mathbb{P}[0 \in \operatorname{conv}(S_1, \ldots, S_n)] = \mathbb{P}[Ker A \text{ intersects } \overline{W_n}]$$

Ker A is a random linear subspace of \mathbb{R}^n of codimension d a.s.

Conic Crofton formula

Let *L* be a uniformly distributed random linear subspace of \mathbb{R}^n of codimension *d*. Then for every convex cone *C*,

$$\mathbb{P}[L ext{ intersects } C] = 2(
u_{d+1}(C) +
u_{d+3}(C) + \ldots),$$

where $\nu_k(C)$ are conic intrinsic volumes of C.

If S_k is a standard Gaussian random walk in \mathbb{R}^d , then $Ker A \stackrel{d}{=} L$.

Theorem (Klivans–Swartz (2011), K.–V.–Z. (2015+))

The conic intrinsic volumes $\nu_k(W_n)$ are the coefficients of the polynomial $\frac{(x+1)(x+3)\dots(x+2n-1)}{2^n n!}$. That is $\nu_k(W_n) = b_n(k)$.

Solving the geometric problem

The B_n -invariance (symmetric exchangeability) implies that Ker A intersects every Weyl chamber with the same probability.

Basic lemma

Let $N_{n,d}$ be the number of Weyl chambers of type B_n intersected by Ker A. Then

$$\mathbb{P}[0 \in \operatorname{conv}(S_1, S_2, \ldots, S_n)] = \frac{\mathbb{E}N_{n,d}}{2^n n!}.$$

Solution by the theory of hyperplane arrangements

- The walls of the Weyl chambers are formed by the hyperplanes $x_i = 0$ and $x_i = \pm x_j$, $1 \le i < j \le n$.
- Every subspace of codimension d in "general position" intersects the **same** number of chambers! So $N_{n,d} = const$.

Symmetry group A_{n-1}

The group A_{n-1} acts on \mathbb{R}^n by permuting the coordinates in an arbitrary way. The number of elements is n!. The hyperplane $x_1 + \ldots + x_n = 0$ stays invariant.

Random walk bridge

- Let X_1, \ldots, X_n be i.i.d. random vectors in \mathbb{R}^d with arbitrary density (no symmetry assumption!).
- Consider the partial sums $S_k = X_1 + \ldots + X_k$.
- We are interested in the **random walk bridge**: $S_1, S_2, \ldots, S_{n-1}$ conditioned on $S_n = 0$.

Absorption probability for random walk bridges

Theorem (Kabluchko, V., and Zaporozhets 2015+)

$$\mathbb{P}[0 \in \operatorname{conv}(S_1, \ldots, S_{n-1}) | S_n = 0] = \frac{2}{n!} \left(\begin{bmatrix} n \\ d+2 \end{bmatrix} + \begin{bmatrix} n \\ d+4 \end{bmatrix} + \right)$$

where $\begin{bmatrix} n \\ k \end{bmatrix}$ are the **Stirling numbers** of the first kind defined by

$$x(x+1)\dots(x+n-1) = \sum_{k=1}^{\infty} {n \brack k} x^k$$

[n] k is the number of *n*-permutations with exactly k cycles.
 [n] k is the probability that there are exactly k records in an i.i.d. sample of size n from a continuous distribution.

Special case d = 1 (Sparre Andersen, 1953)

$$\mathbb{P}[S_1 > 0, \ldots, S_{n-1} > 0 | S_n = 0] = 1/n.$$

Symmetry group D_n

The group D_n acts on \mathbb{R}^n by permuting the coordinates in an arbitrary way and by changing the sign of an **even** number of coordinates. The number of elements is $2^{n-1}n!$.

Probabilistic problem corresponding to D_n

- Let X_1, \ldots, X_n be independent identically distributed random vectors in \mathbb{R}^d with centrally symmetric density.
- Consider the partial sums $S_k = X_1 + \ldots + X_k$ and

$$S_n^* = X_1 + \ldots + X_{n-1} - X_n.$$

• We can compute the probability that $\operatorname{conv}(S_1, \ldots, S_n, S_n^*)$ contains 0.

Type $B_{n_1} \times \ldots \times B_{n_r}$

Take *r* independent, symmetric random walks with densities in \mathbb{R}^d with n_1, \ldots, n_r steps. We can compute the probability that the joint convex hull of these random walks absorbs the origin.

Example: $B_1^r = (\mathbb{Z}/2\mathbb{Z})^r$ (Wendel, 1962)

Let X_1, \ldots, X_r be i.i.d. random vectors in \mathbb{R}^d with a centrally symmetric density. Then,

$$\mathbb{P}[0 \notin \operatorname{conv}\{Z_1, \ldots, Z_r\}] = \frac{1}{2^{r-1}} \sum_{k=0}^{d-1} \binom{r-1}{k}.$$

Removing the density assumption

All the stated results are valid for partial sums S_k of increments whose joint distribution has density and is invariant under the action of the corresponding group A_{n-1} , B_n , D_n or $B_{n_1} \times \ldots \times B_{n_r}$.

Example

- The existence of density is essential!
- For a random walk with

$$\mathbb{P}[X_1 = 1] = \mathbb{P}[X_1 = -1] = 1/4, \mathbb{P}[X_1 = 0] = 1/2,$$

the non-absorption probability equals $\frac{1}{2}$ of the nonabsorption probability for a walk with symmetric density.

Theorem (Kabluchko, V., Zaporozhets 2015+)

The absorption probabilities are minimal if the increments have a joint density (and satisfy the respective assumptions).

THANK YOU!