

Wissem Jedidi

University of Tunis King Saud University

New results related to complete monotonicity and Mellin transform, with applications to infinite divisibility

Contribution to Complete monotonicity and alternation of functions

2 Contribution to properties of Mellin transform

3 A Normal Limit Theorem for size biasing

Operators of interest

Let the operators

$$egin{array}{lll} \Delta_c f(x) &:= & f(x+c)-f(x), & \Delta:=\Delta_1, \ heta_c f(x) &:= & f(c)-f(0)+f(x)-f(x+c), & heta:= heta_1, \end{array}$$

Their iterates are given by $\Delta_c^0 f = \theta_c^0 f = f$ and for every $n \in \mathbb{N}$,

$$\Delta_c^n f = \Delta_c (\Delta_c^{n-1} f), \quad \theta_c^n f = (-1)^n (\Delta_c^n f - \Delta_c^n f(0)),$$

so that for every $n \in \mathbb{N}_0$,

$$\Delta_c^n f(x) = \sum_{i=0}^n \binom{n}{i} (-1)^{n-i} f(x+ic)$$
(1)

$$\theta_c^n f = \sum_{i=0}^n \binom{n}{i} (-1)^i \left(f(x+ic) - f(ic) \right).$$
(2)

Completely monotone and alternating functions

Definition (Berg & Christensen 1984)

Let $D = (0, \infty)$ or $[0, \infty)$ or \mathbb{N}_0 . A function $f : D \to f(D)$ is called completely monotone on D, we denote $f \in \mathcal{CM}(D)$, if $f(D) \subset [0, \infty)$ (respectively completely alternating, we denote $f \in \mathcal{CA}(D)$, if $f(D) \subset \mathbb{R}$), and for if all finite sets $\{c_1, \cdots, c_n\} \subset D$ and $x \in D$, we have

$$(-1)^n \Delta_{c_1} \cdots \Delta_{c_n} f(x) \ge 0$$
 (respectively ≤ 0).

Theorem (Bernstein's characterization of $\mathcal{C\!M}(0,\infty))$

$$\begin{split} f \in \mathcal{CM}(0,\infty) &\iff (-1)^n f^{(n)}(\lambda) \geq 0, \quad \forall n \geq 0 \text{ and } \lambda > 0 \\ &\iff f(\lambda) = \int_{[0,\infty)} e^{-\lambda x} \nu(dx). \end{split}$$

Theorem

The class of Bernstein functions \mathcal{BF} is given by

$$\begin{aligned} \mathcal{BF} &= \{\phi: (0,\infty) \to (0,\infty), \text{ differentiable, } s.t. \ \phi' \in \mathcal{CM}(0,\infty) \} \\ &= \{\phi(\lambda) = q + d \ \lambda + \int_{(0,\infty)} (1 - e^{-\lambda x}) \ \pi(\mathrm{d}x), \ \lambda \ge 0 \} \\ &= \mathcal{CA}(0,\infty) \cap \{\phi \ge 0\}. \end{aligned}$$

Note that $f \in \mathcal{C}\mathcal{M}(0,\infty) \Longrightarrow -f \in \mathcal{C}\mathcal{A}(0,\infty)$

Theorem (Hausdorff's characterization of $\mathcal{CM}(\mathbb{N})$ and $\mathcal{CA}(\mathbb{N})$)

$$\begin{aligned} (a_k)_{k\geq 0} \in \mathcal{C}\mathcal{M}(\mathbb{N}_0) &\iff (-1)^n \Delta^n a(k) \geq 0, \ \forall k \in \mathbb{N}_0, \ n \in \mathbb{N}_0 \\ &\iff a_0 = \nu([0,1]), \quad a_k = \int_{(0,1]} u^k \nu(\mathrm{d} u), \ k \in \mathbb{N}_0 \\ (a_k)_{k\geq 0} \in \mathcal{C}\mathcal{A}(\mathbb{N}_0) &\iff (-1)^n \Delta^n a(k) \leq 0, \ \forall k \in \mathbb{N}_0, \ n \in \mathbb{N} \\ &\iff a_k = q + d \ k + \int_{[0,1]} (1 - u^k) \ \mu(\mathrm{d} u), \ k \in \mathbb{N}_0. \end{aligned}$$

Definition : A sequence $a = (a_k)_{k \ge 0}$ is called minimal (and we denote $a \in CM^*(\mathbb{N}_0)$, resp. $a \in CA^*(\mathbb{N}_0)$) if the sequence

$$\{a_0 - \epsilon, a_1, \cdots, a_k, \cdots\} \quad (\text{resp.} \{a_0, a_1 - \epsilon, \cdots, a_k - \epsilon, \cdots\})$$

is not in $\mathcal{CM}(\mathbb{N}_0)$ (resp. $\mathcal{CA}(\mathbb{N}_0)$) for any $\epsilon > 0$.

Theorem (Widder 1946 and Athavale-Ranjekar 2002)

A sequence a is minimal IFF $\nu(\{0\}) = 0$ (resp. $\mu(\{0\}) = 0$).

FACT and QUESTION

<u>Fact</u> : Minimal completely monotone (resp. alternating) functions are interpolated by functions in CM (resp. BF)!

Question : Can we affirm that a function f is CM (resp. BF) if we know that the sequence $(f(k))_k$ is CM (respectively CA)?

<u>Reformulation</u>: Could a CM (resp. CA) and minimal sequence $(a_k)_k$ be interpolated by a regular enough function f, which is not CM (respectively \mathcal{BF})?

This is a kind of converse to Hausdorff's moment characterization problem !

ANSWER for CM

Theorem (Characterization of \mathcal{CM})

A function $\Psi \in C\mathcal{M}(\mathbb{R}_+)$ IFF the two following conditions hold : (i) Ψ have an holomorphic bounded extension on Re(z) > 0; (ii) the sequence $(\Psi(k))_{k>0} \in C\mathcal{M}^*(\mathbb{N}_0)$.

Compare with

Theorem (Mai, Schenk, Scherer 2015)

 $\begin{array}{l} \Psi \in \mathcal{CM}(\mathbb{R}_+) \ \textit{IFF } \Psi \ \textit{is continuous and} \\ \left(\Psi(\textit{xk}) \right)_{k \geq 0} \in \mathcal{CM}^*(\mathbb{N}_0), \quad \forall x \in \mathbb{Q} \cap (0, \infty). \end{array}$

Additional Results on $\mathcal{C\!M}$

Corollary

 $\Psi \in \mathcal{CM}(0,\infty)$ IFF for some (and hence all) sequence $\epsilon_n \searrow 0$, (i) Ψ has a holomorphic bounded extension on $\operatorname{Re}(z) > \epsilon_n$; (ii) $(\Psi(\epsilon_n + k))_{k \ge 0} \in \mathcal{CM}^*(\mathbb{R}_+)$.

Corollary

Two functions in $\mathcal{CM}(0,\infty)$ coincide on $\mathbb N$ starting from a certain rank IFF they are equal.

Answer for \mathcal{BF}

Theorem (Characterization of \mathcal{BF})

A function $\Phi:[0,\infty)\to [0,\infty)$ belongs to \mathcal{BF} if and only if

(i) it has an holomorphic extension on Re(z) > 0, s.t. $|\Phi(c+z) - \Phi(z)| \le M$ for some c, M > 0(ii) $(\Phi(k))_{k>0} \in CA^*(0,\infty)$.

Corollary

A function $\Phi : [0, \infty) \longrightarrow [0, \infty)$ belongs to \mathcal{BF} IFF it is continuous and for each $n \in \mathbb{N}, \ \left(\Phi\left(\frac{k}{n}\right)\right)_{k \ge 0} \in \mathcal{CA}^*(\mathbb{N}_0).$

Corollary

Two Bernstein functions coincide on \mathbb{N}_0 starting from a certain rank if and only if they are equal on $[0, \infty)$.

Tools

Proposition

$$\mathcal{M}_{a}) \Psi \in \mathcal{CM}(0,\infty) \; \textit{IFF for some (and hence for all) } c > 0 \ \lambda \mapsto -\Delta_{c} \Psi(\lambda) = \Psi(\lambda) - \Psi(\lambda + c) \; \in \mathcal{CM}(0,\infty).$$

(b) If $-\Delta_c \Psi \in \mathcal{CM}(0,\infty)$, then $(-\Delta_{nc})\Psi$ converges pointwise, loc. uniformly, to Ψ . The same holds for the successive derivatives of $(-\Delta_{nc})\Psi$.

Proposition

(a) Φ ∈ BF IFF for some (and hence for all) c > 0, λ ↦ θ_cΦ(λ) = Φ(c) - Φ(0) + Φ(λ) - Φ(λ + c) ∈ BF_b.
(b) If θ_cΦ ∈ BF, then θ_{nc}Φ converges pointwise, loc. uniformly, to Φ.

The same holds for the successive derivatives of $\theta_{nc} \Phi$.

Tools

Lemma (Karamata's Theorem improved)

Suppose
$$h, l : [0, \infty) \to [0, \infty)$$
 are linked for every $\lambda \ge 0$ by
 $h(\lambda + n) - h(n) \to l(\lambda)$, as $n \to \infty$ and $n \in \mathbb{N}$.
Then, necessarily $l(\lambda) = \lambda l(1)$ with $l(1) \ge 0$ and
 $h(\lambda + x) - h(x) \to l(\lambda)$, as $x \to \infty$,

uniformly in each compact λ -set in $[0,\infty)$.

Corollary (to Blaschke's theorem)

Two holomorphic functions on $P = \{Re(z) > 0\}$ are identical if their difference is bounded and they coincide along a sequence z_1, z_2, z_3, \cdots in P, s.t. $\sum (1 - |\frac{z_i - 1}{z_i + 1}|) = +\infty$ (in particular for $z_i = i \in \mathbb{N}$).

Alternative Tools

Theorem (Webster 1997)

Let
$$g: [0, \infty) \to [0, \infty)$$
 log-concave s.t. $\lim_{a \to \infty} \frac{g(x+a)}{g(a)} = 1$, $\forall a > 0$. Let
 $a_n = (g'_-(n) + g'_+(n))/2g(n)$ and $\gamma_g = \lim_{n \to \infty} (\sum_{1}^{n} a_j - \log g(n))$.
Then, there exists a unique log-convex solution f to the iter. equation :
 $f(x+1) = g(x)f(x), \quad x > 0, \quad and \quad f(1) = 1,$
given by $f(x) = \frac{e^{-\gamma gx}}{g(x)} \prod_{n=1}^{\infty} \frac{g(n)}{g(n+x)} e^{a_n x}, \quad x > 0.$

Theorem (Nörlund 1926, on Gregory-Newton development)

f admits a Gregory-Newton development $f(z) = \sum_{k=0}^{\infty} (-1)^k \frac{a_k}{k!} z(z-1) \cdots (z-k+1),$ IFF f is holomorphic on $Re(z) > \alpha$ and $|f(z)| \le Ae^{B|z|}$, $\alpha, A, B > 0$.

Necessarily $a_k = (-1)^k \Delta^k f(0), \quad k \ge 0.$

The Mellin transform, first properties

From now on : all random variables are nonnegative.

 $\mathcal{M}_{X}(\lambda) = \mathbb{E}[X^{\lambda}], \text{ for } \lambda \text{ in some domain of definition } \subseteq \mathbb{C},$

 $\mu_{\boldsymbol{X}} = \inf\{\lambda \in \mathbb{R}, \ \mathbb{E}[\boldsymbol{X}^{\lambda}] < \infty\} \quad \text{and} \quad \boldsymbol{\lambda_{\boldsymbol{X}}} = \sup\{\lambda \in \mathbb{R}, \ \mathbb{E}[\boldsymbol{X}^{\lambda}] < \infty\}.$

Proposition

If $\lambda_X > 0$, then, on $[0, \lambda_X]$, \mathcal{M}_X is log-convex and strictly log-convex if X is non-deterministic.

Corollary

Assume $\lambda_X > 0$. For every $\lambda \in (0, \lambda_X)$, the function $t \mapsto \mathcal{M}_X(\lambda + t)/\mathcal{M}_X(t)$ is nondecreasing on $[0, \lambda_X - \lambda)$. It is further increasing whenever X is non-deterministic.

The Mellin transform, injectivity and size biasing

Lemma (Widder's Theorem improved)

Assume
$$M_X = M_Y$$
 on some interval $(\alpha, \beta) \subset \mathbb{R}$, then $X \stackrel{d}{=} Y$.

From now on : $\lambda_X > 0$;

The biased law of order $t \in [0, \lambda_X)$ is denoted $X_{(t)}$:

$$\mathbb{P}(X_{(t)} \in dx) = \frac{x^t}{\mathbb{E}[X^t]} \mathbb{P}(X \in dx), \quad x \ge 0.$$
(3)

Convergence of sequences and families of Mellin transforms

 $\mathbb{T} = \mathbb{N}$ or $[0, \infty)$. A subsequence of $(X_t)_{t \in \mathbb{T}}$, is a sequence $(X_{t(n)})_{n \in \mathbb{N}}$ with function $t : \mathbb{N} \to \mathbb{T}$ s.t. $t(n) \nearrow \infty$.

Definition (Billingsley)

(i)
$$(X_n)_{n\in\mathbb{N}}$$
 is tight if $\sup_{n\in\mathbb{N}} \mathbb{P}(|X_n| > x) \to 0$ as $x \to \infty$.
(ii) $(X_n)_{n\in\mathbb{N}}$ is UI if $\sup_{n\in\mathbb{N}} \mathbb{E}[|X_n| \mathbb{1}_{X_n > x}] \to 0$ as $x \to \infty$.

Definition

(i) $(X_t)_{t\in\mathbb{T}}$ is ultimately tight if $\limsup_{t\in\mathbb{T}} \mathbb{P}(X_t > x) \to 0$, as $x \to \infty$. (ii) $(X_t)_{t\in\mathbb{T}}$ is λ -UI if $\limsup_{t\in\mathbb{T}} \mathbb{E}[X_t^{\lambda} \mathbb{1}_{X_t > x}] \to 0$, as $x \to \infty$. (iii) $X_t \xrightarrow{d} X_{\infty}$, if $X_{t(n)} \xrightarrow{d} X_{\infty}$ in the usual sense for every $(t(n))_n$.

].

Convergence of sequences and families of Mellin transforms

Theorem

1) Let
$$X_{\infty} \geq 0$$
. The following assertions are equivalent, as $t \to \infty$:
(i) $X_t \xrightarrow{d} X_{\infty}$ and $(X_t)_{t \in \mathbb{T}}$ is λ_0 -UI;
(ii) $X_t \xrightarrow{d} X_{\infty}$ and $\mathbb{E}[X_t^{\lambda_0}] \to \mathbb{E}[X_{\infty}^{\lambda_0}] < \infty$;
(iii) $\mathbb{E}[X_t^{\lambda}] \to \mathbb{E}[X_{\infty}^{\lambda}]] < \infty$, $\forall \lambda \in [0, \lambda_0]$.
2) Let $\lambda_1 \in (0, \lambda_0)$ and assume that $\lim_{t\to\infty} \mathbb{E}[X_t^{\lambda}] = f(\lambda)$, $\lambda \in [\lambda_1, \lambda_0]$.
Then (iii) holds and f is well defined on $[0, \lambda_0]$ by $f(\lambda) = \mathbb{E}[X_{\infty}^{\lambda}]$.

Corollary (Simplification)

Let
$$(U_t)_{t\in\mathbb{T}}$$
, $(V_t)_{t\in\mathbb{T}}$ and $(W_t)_{t\in\mathbb{T}}$ s.t. U_t and V_t are independent,
 $W_t \stackrel{d}{=} U_t V_t$, $W_t \stackrel{d}{\to} U_\infty$ and $V_t \stackrel{d}{\to} V_\infty$
and there exists $\lambda_o > 0$ such that $(W_t)_{t\in\mathbb{T}}$ is $\lambda_o - UI$. Then,
 $U_t \stackrel{d}{\to} U_\infty$ and $\mathbb{E}[U_\infty^{\lambda}] = \frac{\mathbb{E}[W_\infty^{\lambda}]}{\mathbb{E}[V_\infty^{\lambda}]}, \forall \lambda \in [0, \lambda_o].$

t-monotony and characterization

For a, b > 0,, $\mathfrak{b}_{a,b}$ and \mathfrak{g}_a denote r.v.'s with respectively beta and Gamma distribution . It is well known that

$$\mathfrak{g}_a \stackrel{d}{=} \mathfrak{b}_{a,b} \, \mathfrak{g}_{a+b} \quad \text{and} \quad \mathfrak{b}_{a,b+c} \stackrel{d}{=} \mathfrak{b}_{a,b} \, \mathfrak{b}_{a+b,c}, \quad \text{for all } a,b,c>0, \; .$$

Definition

Let
$$t \in (0,\infty)$$
. A function $f:(0,\infty) \to [0,\infty)$ is t-monotone if $f(x) = c + \int_{(0,\infty)} (u-x)^{t-1}_+ \nu(du), \quad c \ge 0, x > 0.$

<u>Note that</u> : f is t-monotone \implies s-monotone $\forall s \in (0, t)$.

Proposition

Let f be t-monotone density function of a r.v. Z > 0 (c = 0). 1) $\nu(0,\infty) < \infty$ IFF $Z \stackrel{d}{=} \mathfrak{b}_t X_{(t)}$. 2) \hookrightarrow Alternative proof for Bernstein's characterization of CM.

t-monotony and stationary excess operator

The continuous-time stationary excess operator is given by

$$\mathcal{E}_t(X) :\stackrel{d}{=} \mathfrak{b}_t X_{(t)}, \quad \text{with } \mathfrak{b}_t \text{ independent from } X_{(t)}.$$
 (4)

 $\left(\mathcal{E}_{t}\right)_{t\in\mathbb{T}}$ forms a semigroup of commuting operators. We have

$$\mathbb{P}(\mathcal{E}_1(X) \leq x) = \frac{1}{\mathbb{E}[X]} \int_0^x \mathbb{P}(X > u) \, du, \ x \geq 0, \quad \text{and} \quad \mathcal{E}_{n+1} = \mathcal{E}_1 \circ \mathcal{E}_n.$$

Harkness and Shantaram (1969) solved the discrete time problem of : 1- finding a deterministic normalization speed c_n , $n \in \mathbb{N}$, and sufficient conditions such that

$$Z_n := \frac{\mathcal{E}_n(X)}{c_n} \stackrel{d}{\longrightarrow} Z_{\infty} \quad \text{as } n \to \infty.$$
 (5)

2- describing the set of possible distributions for Z_{∞} .

Harkness and Shantaram Improved

Natural question : What kind of additional information we can recover from the continuous time problem ? i.e. What are the NCS for

$$Z_t \stackrel{d}{=} rac{1}{c_t} \mathfrak{b}_t X_{(t)} \stackrel{d}{\longrightarrow} Z_\infty \quad ext{when } t \in \mathbb{T} ext{ and } t o \infty?$$

Direction : $t\mathfrak{b}_t \stackrel{d}{\longrightarrow} \mathfrak{e}$, where \mathfrak{e} is exponentially distributed and choose

$$(U_t, V_t, W_t) = (t \mathfrak{b}_t, \frac{X_{(t)}}{\rho_t}, Z_t), \text{ with } \rho_t = t c_t.$$

and assume $\mathbb{E}[Z_{\infty}^{\lambda_{\mathbf{0}}}] < \infty$ for some $\lambda_{\mathbf{0}} \in \mathbb{T} \setminus \{0\}$.

Harkness and Shantaram's problem reformulated : Find NSC on ρ_t , s.t.

$$X_t := \frac{X_{(t)}}{\rho_t} \stackrel{d}{\longrightarrow} X_\infty !$$

Necessarily : $Z_{\infty} \stackrel{d}{=} \mathfrak{e} X_{\infty}$, where \mathfrak{e} is exponentially distributed, independent from X_{∞} .

Main result

Theorem (The Normal Limit Theorem)

1) The following statements are equivalent :
(i)
$$Z_n \xrightarrow{d} Z_{\infty}$$
 and $\mathbb{E}[Z_{\infty}^{\lambda_0}] < \infty$ for some $\lambda_0 > 0$;
(ii) $Z_t \xrightarrow{d} Z_{\infty}$ and $\mathbb{E}[Z_{\infty}^{\lambda_0}] < \infty$ for some $\lambda_0 > 0$;
(iii) $X_n \xrightarrow{d} X_{\infty}$ and $\mathbb{E}[X_{\infty}^{\lambda_0}] < \infty$ for some $\lambda_0 > 0$;
(iv) $X_t \xrightarrow{d} X_{\infty}$ and $\mathbb{E}[X_{\infty}^{\lambda_0}] < \infty$ for some $\lambda_0 > 0$;
(v) $\mathbb{E}[X_t^{\lambda}] \rightarrow \mathbb{E}[X_{\infty}^{\lambda}]$, for all $\lambda \in [0, \infty)$.
(vi) $X_t \xrightarrow{d} X_{\infty}$ and $\limsup_{t \to \infty} \frac{\rho_{t+s}}{\rho_t} < \infty$ for some $s \in \mathbb{T} \setminus \{0\}$.
2) Necessarily,

$$\begin{array}{rcl} \rho_t & \stackrel{+\infty}{\sim} & \mathbb{E}[X_{\infty}] \, \mathbb{E}[X^{t+1}] / \, \mathbb{E}[X^t] \ \text{and} \ \lim_{t \to \infty} \frac{\rho_{t+s}}{\rho_t} = e^{cs}, \quad \forall s \in \mathbb{T} \\ Z_{\infty} & \stackrel{d}{=} & \mathfrak{e} X_{\infty} \quad \text{where } \mathfrak{e} \ \text{and} \ X_{\infty} \ \text{are independent} \\ & \stackrel{d}{=} & e^{-cs} \, \mathfrak{b}_s \, (Z_{\infty})_{(s)}, \quad \forall s \ge 0 \\ \log X_{\infty} & \stackrel{d}{=} & Normal(\log \mathbb{E}[X_{\infty}] - \frac{c}{2}, \frac{c}{2}). \end{array}$$

Let $g: (0, \infty) \to \mathbb{R}$, recall given by $\Delta_a g(x) := g(x+a) - g(x)$. g is said monotone of order $k \in \mathbb{N}$, if

$$(-1)^k \Delta_{a_1} \Delta_{a_2} \cdots \Delta_{a_k} g \leq 0, \quad \forall a_1, a_2, \cdots a_k > 0, \ k \in \mathbb{N} \setminus \{0\}.$$

• $(-1)^k g^{(k)} \ge 0$ implies that g is monotone of order k;

• Choose $\alpha = \mathbb{E}[X_{\infty}]$, and define for $t \geq 0$

$$g_X(t) = \log \mathbb{E}[X^t]$$
 and $\rho_t = \alpha \mathbb{E}[X_{(t)}] = \alpha \frac{\mathbb{E}[X^{t+1}]}{\mathbb{E}[X^t]} = \alpha \exp \Delta_1 g_X(t);$

 \bullet We already know that that g_X is convex, that $t\mapsto \rho_t\nearrow$ and then

$$\frac{\rho_{t+s}}{\rho_t} = \frac{\mathbb{E}[X_{(t+s)}]}{\mathbb{E}[X_{(t)}]} = \exp \Delta_1 \Delta_s g_X(t) \le 1;$$

- If g_X is monotone of order 3 (g'_X is concave), then $t\mapsto
 ho_{t+s}/
 ho_t
 earrow$;
- $\lim_{t\to\infty} \rho_{t+s}/\rho_t = e^{cs}$ for some $c \ge 0$.

Example

If g'_X is a concave function, then X satisfies the last Theorem. For instance, $\log X$ is an infinite divisible random variable such that its Lévy exponent $g_X = \log \mathcal{M}_X$ has the form

$$g_X(\lambda) = d\lambda + \frac{\sigma^2}{2}\lambda^2 + \int_{(0,\infty)} (e^{-\lambda x} - 1 + \lambda x \mathbb{1}_{x \le 1}) \pi(dx), \quad \lambda \ge 0,$$

with $d \in \mathbb{R}$, $\sigma \geq 0$. Then g'_{χ} is concave. We have

$$\Delta_1 \Delta_s g(t) = \sigma^2 s + \int_{(0,\infty)} e^{-tx} (1 - e^{-x}) (1 - e^{-sx}) \pi(dx), \quad t, s > 0,$$

and $\lim_{t \to \infty} \rho_{t+s} / \rho_t = e^{\sigma^2 s}$

Merci pour votre attention !

Some References

- Aguech, R., Jedidi, W. : Complete monotonicity and Bernstein properties of functions are characterized by their restriction on N₀. Preprint 2016. http://arxiv.org/pdf/1511.08345.pdf
- Garcia, M., L. : Characterization of distributions with the length-bias scaling property. Elect. Comm. in Probab. 14, 186–191, 2009.
- Harkness, W. L., Shantaram, R. : Convergence of a sequence of transformations of distribution functions. Pacific Journal of Mathematics, 31(2), 1969.
- Pakes, A.G., Sapatinas, T., Fosam, E. B. : Characterizations, length-biasing, and infinite divisibility. Statistical Paper 37, 53–69, 1996.
- Shantaram, R., Harkness, W. L. : On a Certain Class of Limit Distributions. Ann. Math. Statist. 43(6), 2067–2071, 1972.
- Schilling, R.L.; Song, R.; Vondraček, Z.: Bernstein Functions. Theory and applications. Second edition, de Gruyter Studies in Mathematics, 37. Walter de Gruyter & Co., Berlin, 2012.
- Widder, D.V. : The Laplace Transform. Princeton University