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@ Contribution to Complete monotonicity and alternation of
functions

© Contribution to properties of Mellin transform

© A Normal Limit Theorem for size biasing



On CM and BF
Operators of interest

Let the operators

A f(x) = f(x+c)—Ff(x), A=Ay,
0cf(x) = f(c)—f(0)+f(x)—f(x+c), 0 =6y,

Their iterates are given by A%f = 0%f = f and for every n € IN,
A = A(AITYF),  00f = (=1)"(A2F — AZF(0)),

so that for every n € Ny,

n

AF(x) = Y (7) (—1)" f(x + ic) (1)
i=0

onf = Z (’7) (—1) (f(eric)—f(ic)). (2)
i=0
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On CM and BF

Completely monotone and alternating functions

Definition (Berg & Christensen 1984)

Let D = (0,00) or [0,00) or INg. A function f : D — f(D) is called
completely monotone on D, we denote f € CM(D), if

f(D) C [0,00) (respectively completely alternating, we denote

f € CA(D), if f(D)C R), and for if all finite sets

{c1,--- ,cn} C D and x € D, we have

(=1)"Ac, - A, f(x)>0 (respectively <0).
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Theorem (Bernstein's characterization of CM(0, c0))

fe CM(0,00) <« (-=1)"F(M(\)>0, Vn>O0and\>0
— )= / e~ (dx).
[0,00)

The class of Bernstein functions BF is given by

BF = {¢:(0,00) — (0,00), differentiable, s.t. ' € CM(0, )}
— B =a+drt [ (1-eP)n(dx), A>0)

(0,00)
— CA(0,00) N {9 > 0}.

Note that f € CM(0,00) = —f € CA(0, o0)
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On CM and BF

Theorem (Hausdorff's characterization of CM(IN) and CA(IN))

(ak) k>0 € CM(No) <= (-1)"A"a(k) >0, Vk € No, n € No

ag =v([0,1]), ax= / ukv(du), k € Ng
(0.1]

(—1)"A"a(k) < 0, Yk € No, n€ N

ak:q—i-dk—l—/ (1 — u*) p(du), k € Ng
[0.1)

(ak) x>0 € CA(INo)

It

Definition : A sequence a = (ax) > is called minimal (and we
denote a € CM™*(INy), resp. a € CA*(INp)) if the sequence

{30—6,317“’ 7ak""} (resp, {30)31_65"' ,ak—G,"'})

is not in CM(INg) (resp. CA(INg)) for any € > 0.

Theorem (Widder 1946 and Athavale-Ranjekar 2002)

A sequence a is minimal IFF v({0}) = 0 (resp. p({0}) =0).

W. Jedidi 6/25




On CM and BF

Fact :

Question : Can we affirm that a function f is CM (resp. BF)
if we know that the sequence (f(k)), is CM (respectively CA) 7

Reformulation : Could a CM (resp. CA ) and minimal
sequence (ax), be interpolated by a regular enough function f,
which is not CM (respectively BF)?

This is a kind of converse to Hausdorff's moment
characterization problem !
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On CM and BF

Theorem (Characterization of CM)

A function W € CM(R4.) IFF the two following conditions hold :
(i) W have an holomorphic bounded extension on Re(z) > 0;

(ii) the sequence (V(k)),-, € CM*(INo).

Compare with

Theorem (Mai, Schenk, Scherer 2015)

V e CM(R,) IFF V is continuous and
(W(Xk))kzo € CM*(INg), Vx € Qn(0,00).

W. Jedidi 8/25



On CM and BF

Additional Results on CM

Corollary
¥ € CM(0, c0) IFF for some (and hence all) sequence e, \, 0,
(i) V has a holomorphic bounded extension on Re(z) > €, ;

(ii) (W(en + K)) 50 € CM*(Ry).

Corollary

| \

Two functions in CM(0, c0) coincide on N starting from a certain rank
IFF they are equal.
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On CM and BF

Theorem (Characterization of BF)

A function ¢ : [0, 00) — [0, 00) belongs to BF if and only if

(i) it has an holomorphic extension on Re(z) > 0, s.t.
|®(c + z) — P(z)| < M for some ¢, M >0

(ii) (®(K)) 50 € CA*(0, 00).

Corollary

A function ¢ : [0, 00) — [0, c0) belongs to BF IFF it is continuous and
for eachn € IN, (o (% ))k>0 € CA*(Np).

Two Bernstein functions coincide on INg starting from a certain rank if
and only if they are equal on [0, c0).
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On CM and BF

Tools

(a) V € CM(0, 00) IFF for some (and hence for all) ¢ > 0

A —AW(N) = W) — U\ + ¢) € CM(0, ).
(b) If =AWV € CM(0, 0), then (—Anc)V converges pointwise, loc.
uniformly, to V. The same holds for the successive derivatives of
(—Ap)V.

Proposition
(a) & € BF IFF for some (and hence for all) ¢ > 0,
A= 0cP(N) = P(c) — ¢(0) + P(A) — P(A+ ¢) € BFp.
(b) If 6.® € BF, then 0,.® converges pointwise, loc. uniformly, to ®.

The same holds for the successive derivatives of 0,.P.
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On CM and BF

Tools

Lemma (Karamata's Theorem improved)

Suppose h, | : [0,00) — [0,00) are linked for every A > 0 by
h(A+ n) — h(n) = I(\), asn— oo and ne€ IN.

Then, necessarily I(A\) = XA I(1) with (1) > 0 and
h(A+ x) — h(x) = I(X), asx — oo,

uniformly in each compact A-set in [0, c0).

Corollary (to Blaschke's theorem)

Two holomorphic functions on P = {Re(z) > 0} are identical if
their difference is bounded and they coincide along a sequence
71,20,23,--- in P, s.t. Y (1 — \2;} ) = +oo (in particular for
zi=1E€ IN)

W. Jedidi 12/25




On CM and BF

Alternative Tools

Theorem (Webster 1997)

Let g : [0,00) — [0, 00) log-concave s.t. lim,_,o (g’g)a) =1,Va>0. Let

an = (g(n) + g4(n))/2g(n) and vg = limy_,0 (327 3; — log g(n)).
Then, there exists a unique log-convex solution f to the iter. equation :

f(x +1) = g(x)f(x), x>0, and f(1)=

given by f(x) = eg(lix I, g(gn(:)x) e, x>0.

Theorem (Norlund 1926, on Gregory-Newton development)

f admits a Gregory-Newton development

f(z) = Xilo(-1)  F 2(z=1)- - (z— k+1),
IFF f is holomorphic on Re(z) > « and ‘f(z)‘ < AeBlZl o, A B > 0.
Necessarily a, = (—1)kK A¥f(0), k> 0.
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On Mellin transform

The Mellin transform, first properties

From now on : all random variables are nonnegative.
Mx(X) = E[X?], for X in some domain of definition C C,

px =inf{A € R, E[X] < oo} and Ax =sup{} € R, E[X?] < c0}.

If Ax > 0, then, on [0, A\x], Mx is log-convex and strictly
log-convex if X is non-deterministic.

y

Corollary

Assume Ax > 0. For every A € (0, Ax), the function
t = Mx (X + t)/ Mx(t) is nondecreasing on [0, \x — A). It is
further increasing whenever X is non-deterministic.

v
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A Normal Limit Theorem

The Mellin transform, injectivity and size biasing

Lemma (Widder's Theorem improved)

Assume Mx = My on some interval (o, 3) C R, then X dy.

From now on : Ax > 0;

The biased law of order t € [0, Ax) is denoted X
t

P(X(y) € dx) = ﬁ P(X € dx), x> 0. (3)

P0) X0y =X and (cX)r = cXp), ¢ > 0.

E[XxtHA E[Xfg(X
P1) IE[X(t] = Bl Elg(Xe)] = FEs.

(
(
(P2) (X)), © £ X0 £ (X))
(
(

P3) (X*)) £ (Xen)".
P4) X, Y independent = (XY, t) = Xt)Y(t) (X(¢) and Y{y) independent).
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A Normal Limit Theorem

Convergence of sequences and families of Mellin transforms

T = IN or [0,00). A subsequence of (X;),cr. is a sequence
(Xe(n)) pepy With function ¢ : IN — T s.t. t(n) 7 oo.

Definition (Billingsley)

(i) (Xn)pew is tight if sup,c P(|Xn| > x) — 0 as x — oo.
(i) (Xn)pew is Ulif sup,c E[|Xn|1x,>x] — 0 as x — oo.

Definition

| A\

(i) (Xe)per is ultimately tight if limsup,cqp P(X: > x) — 0, as x — oo.
(i1) (Xe)eer is A-ULif limsup,cp E[XP 1x,5x] — 0, as x — oo.

(i) Xz 4 X, if Xi(n) —9 X, in the usual sense for every (t(n)n -
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A Normal Limit Theorem

Convergence of sequences and families of Mellin transforms

Theorem

1) Let Xoo > 0. The following assertions are equivalent, as t — co :
() Xe <5 Xoo and (Xe) ey is Ao-Ul,;

(i) Xe —2 Xoo and E[X;°] — E[X2°] < oo ;

(iii) E[Xt)‘] — E[Xg\o]] < 0o, VA € [0, A,].

2) Let A1 € (0,),) and assume that lim;_,oo E[X}] = f()\), A € [A1, A,]-
Then (iii) holds and f is well defined on [0, \,] by f(\) = E[X2].

Corollary (Simplification)
Let (Uy)

cer + (Ve)eep and (We),crp s.t. U and V; are independent,
W, LU, Ve, WL Uy and V-5 Vo

and there exists \, > 0 such that (W;),c is A, — Ul. Then,

Us -5 Uy and E[UA] = E[W]VAG[O)\]
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A Normal Limit Theorem

t-monotony and characterization

For a,b > 0,, b, and g, denote r.v.’s with respectively beta and
Gamma distribution . It is well known that

d d
ga = ba,b Jatb and ba,b+c = ba,b baer,m for all a, b7 c>0,.

Definition

Let t € (0,00). A function f : (0, 00) — [0, 00) is t-monotone if
f(x)=c+ f(O,oo)(u —x)w(du), ¢>0,x>0.

Note that : f is t-monotone = s-monotone Vs € (0, t).

Proposition

Let f be t-monotone density function of ar.v. Z >0 (c =0).

1) v(0,00) < 00 IFF Z 2 b, X
2) & Alternative proof for Bernstein's characterization of CM.
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A Normal Limit Theorem

t-monotony and stationary excess operator

The continuous-time stationary excess operator is given by
E:(X) < b, X(¢), with b; independent from X(;). (4)

(€t) e forms a semigroup of commuting operators. We have
1 X
P(&1(X) < x) = W/ P(X > u)du, x>0, and &Epp1=&E10&,.
o

Harkness and Shantaram (1969) solved the discrete time problem of :
1- finding a deterministic normalization speed ¢,, n € IN, and sufficient
conditions such that

En(X) 4

Z, = — Zy asn— oo. (5)

Cn

2- describing the set of possible distributions for Z...
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A Normal Limit Theorem

Harkness and Shantaram Improved

Natural question : What kind of additional information we can recover
from the continuous time problem ? i.e. What are the NCS for
d 1 d
Zy = C—th(t) — Zy whenteTandt— oco?

. d . . o
Direction : tb; — ¢, where ¢ is exponentially distributed and choose

X
(Ut, Vt, Wt) = (t bt» %, Zt)7 Wlth Pt = tCt.

t

and assume E[Zg‘o"] < oo for some A, € T\ {0}.

Harkness and Shantaram's problem reformulated : Find NSC on py, s.t.

X
=20 9y x
Pt

Xt .
Necessarily : Zy 4 ¢ Xoo, Where ¢ is exponentially distributed,
independent from X,,.
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Main result

A Normal Limit Theorem

Theorem (The Normal Limit Theorem)

1) The following statements are equivalent :

(i) Zn <4z, andIE[Zéo"] < oo for some Ao > 0;

(i) Z: 4 Zoo and IE[ZQ?] < oo for some Ao > 0;

(iii) Xn 4 Xoo and E[X;‘c?] < oo for some Ao > 0;

(iv) Xe 4 X and IE[X;L?] < oo for some Ao > 0;

(v) E[X}] = E[XX], forall X € [0,00).

gi)Niéeir;;?O and limsup,_, , 2= < oo for some s € T'\ {0}

pr ¥ EX]EXTY/EIX] and lim % = e,
Zoo 4 ¢eXoo Wwhere ¢ and X, are independent
L e b, (Zo)s) Vs>0
log Xoo 2 Normal(log E[Xso] — g, %)

Vs eT
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A Normal Limit Theorem

Let g : (0,00) = R, recall given by A,g(x) := g(x + a) — g(x).
g is said monotone of order k€ IN, if

(-1)* A, AL, - A, g <0, Var,a,--a >0, ke N\ {0}.

e (—1)*g®) > 0 implies that g is monotone of order k;
e Choose o = E[X], and define for t > 0

E[xH—l]

o SO A .
E[X7] aexp A1gx(t);

gx(t) = logE[X*] and p;=a E[Xy] =«

o We already know that that gx is convex, that t — p;  and then

E[X,,..
Pt+s — [ (i‘+ )] — eXpAlASgX(t) S 1,

pt E[X()]

o If gx is monotone of order 3 ( g% is concave), then t — pris/pr
o lim;_ o0 pris/pr = € for some ¢ > 0.
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A Normal Limit Theorem

Example

If gy is a concave function, then X satisfies the last Theorem.
For instance, log X is an infinite divisible random variable such
that its Lévy exponent gx = log M x has the form

2
gx(\) = dX + %/\2 +/ (e — 14 Axl<1)7w(dx), A>0,
(0,00)

with d € R, 0 > 0. Then g% is concave. We have

ArA.g(t) = a2s+/ e B(1—e)(1—e~*)m(dx), t 50,
(000)

5 2
and lim¢_ o0 pris/pr = €7°°
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Merci pour votre attention!
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